首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulation of the microtubule-mediated motions within eggs during fertilization was investigated in relation to the shift in intracellular pH (pHi) that occurs during the ionic sequence of egg activation in the sea urchins Lytechinus variegatus and Arbacia punctulata. Microtubule assembly during formation of the sperm aster and mitotic apparatus was detected by anti-tubulin immunofluorescence microscopy, and the microtubule-mediated migrations of the sperm and egg nuclei were studied with time-lapse video differential interference contrast microscopy. Manipulations of intracellular pH were verified by fluorimetric analyses of cytoplasmic fluorescein incorporated as fluorescein diacetate. The ionic sequence of egg activation was manipulated i) to block the pHi shift at fertilization or reduce the pHi of fertilized eggs to unfertilized values, ii) to elevate artificially the pHi of unfertilized eggs to fertilized values, and iii) to elevate artificially or permit the normal pHi shift in fertilized eggs in which the pHi shift at fertilization was previously prevented. Fertilized eggs in which the pHi shift was suppressed did not assemble microtubules or undergo the normal microtubule-mediated motions. In fertilized eggs in which the pHi was reduced to unfertilized levels after the assembly of the sperm aster, no motions were detected. If the intracellular pH was later permitted to rise, normal motile events leading to division and development occurred, delayed by the time during which the pH elevation was blocked. Microtubule-mediated events occurred in eggs in which the intracellular pH was elevated, even in unfertilized eggs in which the pH was artificially increased. These results indicate that the formation and normal functioning of the egg microtubules is initiated, either directly or indirectly, by the shift in intracellular pH that occurs during fertilization.  相似文献   

2.
Sea urchin sperm contain a phenylhydrazine-sensitive peroxidase that is believed to use hydrogen peroxide produced by the fertilized egg to reduce sperm fertility and thereby assist in the prevention of polyspermy. Strongylocentrotus purpuratus sperm were treated initially with hypotonic phosphate buffer (pH 7.0) to remove catalase and then extracted with 0.5% Triton X-100 in 0.5 M acetate buffer (pH 5.0). Peroxidase activity in this detergent extract was assayed using 3,3',5,5'-tetramethyl benzidine (TMB) as oxidizable substrate. Kinetic studies showed that the Km for TMB is 250 microM. Benzohydroxamic acid and phenylhydrazine are known to be competitive inhibitors of a variety of plant and animal peroxidases. These substances were found to competitively inhibit the sea urchin sperm peroxidase: for benzohydroxamic acid, Ki = 51.2 microM, mean inhibitory dose (ID50) = 146.7 microM; for phenylhydrazine, Ki = 201 nM, ID50 = 303 nM. These findings indicate that the biochemical properties of the sea urchin sperm peroxidase resembles those of peroxidases found in somatic tissues where oxygen radicals are produced by phagocytes to kill bacteria and support our hypothesis that the sperm peroxidase has a functional role in the prevention of polyspermy during fertilization.  相似文献   

3.
During fertilization in Drosophila, a single 1.75 mm long sperm enters the egg through the anterior end. Using a sperm-specific monoclonal antibody and indirect immunofluorescence of whole fixed eggs and embryos, intracellular interactions between the sperm and egg are examined as they occur inside the fertilized egg. The sperm nucleus remains attached to the axoneme throughout the entire process of fertilization including the stages of pronuclear maturation, pronuclear fusion and karyogamy indicating an intracellular function for the sperm during these stages. Optical sections and three-dimensional reconstructions of whole mount specimens reveal that a stereotypically folded structure forms during fertilization strongly suggesting that this structure positions the male pronucleus in the proper region of the egg in anticipation of pronuclear fusion. This, and the appearance of regional structural changes in the sperm upon entry suggests that sperm are localized via specific interactions with the maternal cytoplasm. Following fertilization and during the ensuing cleavage divisions, the sperm remains intact and localized at the anterior end of the egg. During cellular blastoderm formation the sperm tail is sequestered into the anterior yolk area where it continues to persist well into embryonic development. This structural analysis identifies intracellular sperm/egg interactions as an important aspect of fertilization, and provides a unique model system for the study of sperm/egg interactions not presently available in other systems.  相似文献   

4.
The pathway of sperm entry during sea urchin fertilization was analyzed by using sperm covalently labeled with fluorescent and radioactive tracers. Sperm that have been covalently labeled on their surfaces with fluorescein isothiocyanate (FITC) or a radioactive congener, diiodofluorescein isothiocyanate (125IFC), transfer labeled components to the egg that persist throughout early development. In order to study the transfer of sperm components and their fate after fertilization, cytochalasin B-dependent inhibition of fertilization, previously shown to permit the cortical reaction of sea urchin eggs but block sperm pronuclear incorporation, was investigated. Under certain conditions cytochalasin B or D (CB or CD) results in about half of the activated eggs having both the sperm nucleus and the fluorescently labeled sperm components arrested apparently at the level of the egg plasma membrane. This arrest of internalization was reversed by removal of CB or CD, and the sperm derivatives entered the egg. When sperm were labeled noncovalently with ethidium bromide or rhodamine 123, fluorescence was transferred to the egg in the cytochalasin-inhibited state in a fashion similar to that found in normal fertilization; in both cases the sperm fluorescence disappeared within a few minutes of fertilization, due to the repartitioning of the noncovalent dyes into the egg cytoplasm. It is concluded that cytochalasin arrests fertilization at an intermediate step in which the sperm has fused with the egg to achieve cytoplasmic continuity, but in which the subsequent internalization of sperm components is inhibited. After removal of cytochalasins the fluorescent sperm components move from the egg surface to an internal site, a process that can be monitored by time-lapse video microscopy with an image intensifier to permit extended observations of sperm fluorescence. The cytoplasmic location of labeled sperm components was substantiated by autoradiography of early embryos fertilized with 125IFC-labeled sperm; transfer of sperm components to an internal site was seen after fertilization of either sea urchin or mouse eggs. Taken together, the data suggest that the fate of the labeled sperm surface components, as well as that of the sperm nucleus, is to be transferred to the egg cytoplasm, and that this transfer is mediated by the actin-dependent cytoskeleton of the egg.  相似文献   

5.
The provisioning of offspring can have far-reaching consequences for later life in a wide range of organisms and generally this provisioning is thought to be under maternal influence or control. In experiments with a broadcast-spawning ascidian, we found that the size of offspring was determined by egg size and the abundance of sperm present during fertilization. Larger eggs were fertilized at low sperm concentrations, whilst smaller eggs were successfully fertilized at high sperm concentrations. These differences in fertilized egg size resulted in differences in the development rate, hatching success and mean size of the subsequent larvae. Our results suggest that, in contrast to females that reproduce by other mating systems, free-spawning mothers lack some control over the provisioning of offspring. Furthermore, because males can alter the sperm environment, they can exert paternal (non-genetic) control over key offspring characteristics.  相似文献   

6.
Although theory and widespread evidence show that the evolution of egg size is driven primarily by offspring and maternal fitness demands, an additional explanation invokes sperm limitation as a selective force that could also influence egg size optima. Levitan proposed that constraints from gamete encounter in external fertilization environments could select for enlargement of ova to increase the physical size of the fertilization target. We test this theory using in vitro fertilization experiments in an externally fertilizing fish. Sockeye salmon (Onchorhyncus nerka) females show considerable between-individual variation in ovum size, and we explored the consequences of this natural variation for the fertilization success of individual eggs under conditions of sperm limitation. By engineering consistent conditions where in vitro fertilization rate was always intermediate, we were able to compare the sizes of fertilized and unfertilized eggs across 20 fertilization replicates. After controlling for any changes in volume through incubation, results showed that successfully fertilized eggs were significantly larger than the eggs that failed to achieve fertilization. Under conditions without sperm limitation, fertility was unaffected by egg size. Our findings therefore support Levitan''s theory, demonstrating empirically that some element of egg size variation could be selected by fertilization demands under sperm limitation. However, further research on sperm limitation in natural spawnings is required to assess the selective importance of these results.  相似文献   

7.
Prevention of polyspermic fertilization in sea urchins (Jaffe, 1976, Nature (Lond.). 261:68-71) and the worm Urechis (Gould-Somero, Jaffe, and Holland, 1979, J. Cell Biol. 82:426-440) involves an electrically mediated fast block. The fertilizing sperm causes a positive shift in the egg's membrane potential; this fertilization potential prevents additional sperm entries. Since in Urechis the egg membrane potential required to prevent fertilization is more positive than in the sea urchin, we tested whether in a cross-species fertilization the blocking voltage is determined by the species of the egg or by the species of the sperm. With some sea urchin (Strongylocentrotus purpuratus) females, greater than or equal to 90% of the eggs were fertilized by Urechis sperm; a fertilization potential occurred, the fertilization envelope elevated, and sometimes decondensing Urechis sperm nuclei were found in the egg cytoplasm. After insemination of sea urchin eggs with Urechis sperm during voltage clamp at +50 mV, fertilization (fertilization envelope elevation) occurred in only nine of twenty trials, whereas, at +20 mV, fertilization occurred in ten of ten trials. With the same concentration of sea urchin sperm, fertilization of sea urchin eggs occurred, in only two of ten trials at +20 mV. These results indicate that the blocking voltage for fertilization in these crosses is determined by the sperm species, consistent with the hypothesis that the fertilization potential may block the translocation within the egg membrane of a positively charged component of the sperm.  相似文献   

8.
Motility and the behavior and inheritance of centrosomes are investigated during mouse and sea urchin fertilization. Sperm incorporation in sea urchins requires microfilament activity in both sperm and eggs as tested with Latrunculin A, a novel inhibitor of microfilament assembly. In contrast the mouse spermhead is incorporated in the presence of microfilament inhibitors indicating an absence of microfilament activity at this stage. Pronuclear apposition is arrested by microfilament inhibitors in fertilized mouse oocytes. The migrations of the sperm and egg nuclei during sea urchin fertilization are dependent on microtubules organized into a radial monastral array, the sperm aster. Microtubule activity is also required during pronuclear apposition in the mouse egg, but they are organized by numerous egg cytoplasmic sites. By the use of an autoimmune antibody to centrosomal material, centrosomes are detected in sea urchin sperm but not in unfertilized eggs. The sea urchin centrosome expands and duplicates during first interphase and condenses to form the mitotic poles during division. Remarkably mouse sperm do not appear to have the centrosomal antigen and instead centrosomes are found in the unfertilized oocyte. These results indicate that both microfilaments and microtubules are required for the successful completion of fertilization in both sea urchins and mice, but at different stages. Furthermore they demonstrate that centrosomes are contributed by the sperm during sea urchin fertilization, but they might be maternally inherited in mammals.  相似文献   

9.
Barriers to polyspermy (fertilization of a female gamete by more than one sperm) are essential to successful reproduction in a wide range of organisms including mammals, echinoderms, fish, molluscs, and algae. In animals and fucoid algae, polyspermy results in early death of the zygote due to transmission of extra centrioles from the sperm and consequent disruptions to the mitotic spindle. Accordingly, a variety of mechanisms have evolved to prevent penetration of an egg by more than one sperm, or more than one sperm nucleus from fusing with an egg nucleus. The evolution of internal fertilization has also provided an opportunity to limit the number of sperm that gain access to each egg, as occurs in the mammalian female reproductive tract. Polyspermy and polyspermy barriers in plants have received much less attention. Plants lack centrioles and therefore, polyspermy would not be expected to cause lethal aberrant spindle organization. However, we find evidence from cytological, genetic and in vitro fertilization studies for polyspermy barriers in plants. Angiosperms, like mammals, are internally fertilized, and exert a high level of control over the number of sperm that have access to each female gamete. In particular, regulation of pollen tube growth ensures that in general only two sperm enter each embryo sac, where one fertilizes the egg and the other the central cell. Despite this 1:1 ratio of sperm to gametes within the embryo sac, angiosperms still require a mechanism to ensure that each female gamete is fertilized by one and only one sperm. Here, we present evidence suggesting that a polyspermy block on the egg may be part of the mechanism that promotes faithful double fertilization.  相似文献   

10.
The sea urchin egg is a quiescent cell...until fertilization, when the egg is activated. The classic respiratory burst at fertilization is the result of prodigious hydrogen peroxide production, but the mechanism for this synthesis is not known. Here we quantitate the kinetics of hydrogen peroxide synthesis at a single-cell level using an imaging photon detector, showing that 60 nM hydrogen peroxide accumulates within the perivitelline space of each zygote. We find that the NADPH oxidation activity is enriched at the cell surface and is sensitive to a pharmacological inhibitor of NADPH oxidase enzymes. Finally, we show that a sea urchin dual oxidase homolog, Udx1, is responsible for generating the hydrogen peroxide necessary for the physical block to polyspermy. Phylogenetic analysis of the enzymatic modules in Udx1 suggests a potentially conserved role for the dual oxidase family in hydrogen peroxide production and regulation during fertilization.  相似文献   

11.
In the double fertilization of angiosperms, one sperm cell fertilizes an egg cell to produce a zygote, whereas the other sperm cell fertilizes a central cell to give rise to an endosperm. There is little information on gamete membrane dynamics during double fertilization even though the cell surface structure is critical for male and female gamete interactions. In a recent study, we analyzed gamete membrane behavior during double fertilization by live-cell imaging with Arabidopsis gamete membrane marker lines. We observed that the sperm membrane signals occasionally remained at the boundary of the female gametes after gamete fusion. In addition, sperm membrane signals entering the fertilized female gametes were detected. These findings suggested that plasma membrane fusion between male and female gametes occurred with the sperm internal membrane components entering the female gametes, and this was followed by plasmogamy.  相似文献   

12.
Jaspisin, originally isolated from a marine sponge as an inhibitor of the hatching of the sea urchin (Hemicentrotus pulcherrimus) embryo, causes inhibition of sea urchin fertilization. Electron microscopic examination revealed that the acrosome reaction was induced in jaspisin-treated sperm when they were incubated with an intact egg. The acrosome-reacted sperm bound to the vitelline layer by the acrosomal material surrounding the acrosomal process. However, fusion of the acrosomal process and the egg plasma membrane failed to take place. Membrane potential changes were monitored using eggs preloaded with a membrane potential-sensitive fluorochrome, di-8-ANEPPS. Depolarization of the membrane potential, normally observed in the fertilized egg was not observed in the egg inseminated in the presence of jaspisin, indicating the absence of electrical continuity between the jaspisin-treated egg and sperm. Jaspisin inhibited the activities of matrix metallo-endoproteinase members but not of other types of proteinases. These results provide strong, albeit indirect, evidence that a matrix metallo-endoproteinase(s) is involved in the process of gamete fusion during sea urchin fertilization.  相似文献   

13.
Summary Interspecies intracytoplasmic sperm injection has been carried out to understand species-specific differences in oocyte environments and sperm components during fertilization. While sperm aster organization during cat fertilization requires a paternally derived centriole, mouse and hamster fertilization occur within the maternal centrosomal components. To address the questions of where sperm aster assembly occurs and whether complete fertilization is achieved in cat oocytes by interspecies sperm, we studied the fertilization processes of cat oocytes following the injection of cat, mouse, or hamster sperm. Male and female pronuclear formations were not different in the cat oocytes at 6 h following cat, mouse or hamster sperm injection. Microtubule asters were seen in all oocytes following intracytoplasmic injection of cat, mouse or hamster sperm. Immunocytochemical staining with a histone H3-m2K9 antibody revealed that mouse sperm chromatin is incorporated normally with cat egg chromatin, and that the cat eggs fertilized with mouse sperm enter metaphase and become normal 2-cell stage embryos. These results suggest that sperm aster formation is maternally dependent, and that fertilization processes and cleavage occur in a non-species specific manner in cat oocytes.  相似文献   

14.
This light and transmission electron microscopical study shows that the first polar body is given off before ovulation and that part of its cell membrane and that of the surrounding oocyte have long microvilli at the time of its ejection. Several layers of cumulus cells initially surround the secondary oocyte and first polar body, but the ovulated oocytes in the oviducts in the process of being fertilized do not have cumulus cells around them. Partly expelled second polar bodies occur in the oviduct; they are elongated structures that lack organelles and have electron-dense nuclei. A small fertilization cone appears to form around the sperm tail at the time of sperm entry into the egg and an incorporation cone develops around the sperm head in the egg cytoplasm. In three fertilized eggs a small hole was seen in the zona, which was presumably formed by the spermatozoon during penetration. Cortical granules, present in ovarian oocytes, are not seen in fertilized tubal or uterine eggs; release of their contents probably reduces the chances of polyspermy, although at least one polyspermic fertilized egg was seen and several other fertilized eggs had spermatozoa within the zona pellucida. In the zygote the pronuclei come to lie close together, but there was no evidence of fusion. A "yolk mass," which becomes eccentric before ovulation, is extruded by the time the two-cell embryos are formed, but many vacuoles remain in the non-yolky pole of the egg. A shell membrane of variable thickness is present around all uterine eggs but its origin remains undetermined.  相似文献   

15.
The influence of centrioles, derived from the sperm flagellar basal bodies, and the centrosomal material (MTOCs) on spindle formation in the brown alga Fucus distichus (oogamous) was studied by immunofluorescence microscopy using anti-centrin and anti-beta-tubulin antibodies. In contrast to a bipolar spindle, which is formed after normal fertilization, a multipolar spindle was formed in polyspermic zygote. The number of mitotic poles in polyspermic zygotes was double the number of sperm involved in fertilization. As an anti-centrin staining spot (centrioles) was located at these poles, the multipolar spindles in polyspermic zygotes were produced by the supplementary centrioles. When anucleate egg fragments were fertilized, chromosome condensation and mitosis did not occur in the sperm nucleus. Two anti-centrin staining spots could be detected, microtubules (MTs) radiated from nearby, but the mitotic spindle was never produced. When a single sperm fertilized multinucleate eggs (polygyny), abnormal spindles were also observed. In addition to two mitotic poles containing anti-centrin staining spots, extra mitotic poles without anti-centrin staining spots were also formed, and as a result multipolar spindles were formed. When karyogamy was blocked with colchicine, it became clear that the egg nucleus proceeded independently into mitosis accompanying chromosome condensation. A monoastral spindle could be frequently observed, and in rare cases a barrel-shaped spindle was formed. However, when a sperm nucleus was located near an egg nucleus, the two anti-centrin staining spots shifted to the egg nucleus from the sperm nucleus. In this case, a normal spindle was formed, the egg chromosomes arranged at the equator, and the associated MTs elongated from one pole of the egg spindle toward the sperm chromosomes which were scattered. From these results, it became clear that paternal centrioles derived from the sperm have a crucial role in spindle formation in the brown algae, such as they do during animal fertilization. However, paternal centrioles were not adequate for the functional centrosome during spindle formation. We speculated that centrosomal materials from the egg cytoplasm aggregate around the sperm centrioles and are needed for centrosomal activation.  相似文献   

16.
Recent evidence suggests roles for egg derived hydrogen peroxide (H2O2) and ovoperoxidase (secreted by cortical granules) in both fertilization envelope hardening and the block to polyspermy in sea urchins. Strongylocentrotus purpuratus eggs were found to release H2O2 during the cortical reaction at fertilization. Treatment of sperm with equivalent concentrations of H2O2 resulted in a rapid loss of sperm fertilizing ability. Attempts were made to induce polyspermy by utilizing ovoperoxidase inhibitors at concentrations known to inhibit fertilization envelope hardening. Eggs fertilized in phenylhydrazine became polyspermic, while 3-amino-1,2,4-triazole-treated eggs did not. These data suggested that a sperm peroxidase might be involved in preventing polyspermy. This hypothesis was tested by the addition of phenylhydrazine or 3-amino-1,2,4-trizaole to H2O2-treated sperm. Phenylhydrazine acted to protect sperm fertility from H2O2, while 3-amino-1,2,4-triazole increased the adverse effect of H2O2. Simultaneous addition of both inhibitors to sperm incubated in H2O2 gave an intermediate value of sperm fertility. These data indicate that (1) H2O2 generated by sea urchin eggs during the cortical reaction at fertilization is used for two separate processes, fertilization envelope hardening and the prevention of polyspermy; (2) ovoperoxidase is probably not involved in preventing polyspermy; and (3) egg-derived H2O2 reacts directly with sperm enzymes to prevent polyspermy. The phenylhydrazine-sensitive enzyme in the sperm is probably a peroxidase that acts to inactivate sperm, while the 3-amino-1,2,4-triazolesensitive enzyme is probably a catalase which protects sperm from H2O2. This hypothesis is consistent with model experiments on horseradish peroxidase and bovine liver catalase.  相似文献   

17.
Taurine and hypotaurine were examined for their efficacy in replacing sperm motility factor (SMF), prepared from bovine adrenal cortex, for in vitro fertilization in the golden hamster. Combinations of these amino acids at concentrations of 0.001, 0.01, 0.1, and 1 mM together with 16 μM isoproterenol (a catecholamine β-agonist) were added to the sperm incubations. After three hours of sperm preincubation, oviductal eggs were added to the sperm suspensions and examined for penetration and stage of fertilization after three or five hours of culture. At 0.001 mM, neither taurine or hypotaurine was capable of maintaining motility of hamster sperm for four to 4½ hours or of inducing fertilization. With all other concentrations, both amino acids were found to maintain motility of sperm as well as SMF. Hypotaurine stimulated motility to a greater extent than taurine and both required isoproterenol for the greatest motility. A low proportion of cumulus-free ova were fertilized when sperm were preincubated with either amino acid alone over the range of 0.01 to 1 mM; however, over 80% fertilization was consistently obtained when isoproterenol was also present during sperm incubation. Proportions of ova fertilized with taurine or hypotaurine present during sperm preincubation were comparable to those achieved with SMF. The possibility that taurine or hypotaurine is the sperm motility factor is discussed. After three hours of sperm/egg incubation, a lag in the early events of fertilization was observed in experimental groups treated with one of the amino acids (0.01 mM) alone compared with groups treated with isoproterenol present. However, if sperm/egg incubation was extended from three to five hours, no increase in number of eggs penetrated was found. Therefore, the delay observed at three hours was considered a function of fewer numbers of capacitated sperm present in the absence of isoproterenol rather than of the need for an extended capacitation time.  相似文献   

18.
Bart AN  Dunham RA 《Theriogenology》1996,45(3):673-682
The mean sperm concentration of 10 blue catfish (Ictalurus furcatus ) was 1.03 x 10(10) per gram of testis. Testis weighed 3.9 and 17.2 g, with a mean of 6.6 g per fish. Fertilization rate of channel catfish (Ictalurus punctatus ) eggs fertilized with 5.00 x 10(4) to 1.20 x 10(7) blue catfish spermatozoa per egg was 17 to 87%, with an overall mean of 65%. Sperm concentrations of 5.0 x 10(4)/egg exhibited a lower, 16.6% (P < 0.05) fertilization rate than higher sperm concentrations (1.25 x 10(5) to 1.20 x 10(8)/egg). Batches of 450, 2,000, 5,000, 8,000 and 11,000 eggs were similarly fertilized with various sperm concentrations. Mean fertility rate ranged from 25 to 67%, with an overall mean of 53%. The largest egg mass produced the lowest (P < 0.05) fertilization rate. A combination of 450 eggs per batch and 5.0 x 10(5) to 1.20 x (8) sperm per egg produced the highest rate of fertilization (67 to 87%).  相似文献   

19.
The observations of the fertilization process in the heart-urchin, Clypeaster japonicus with a differential interference microscope indicate that the sperm pronucleus is carried to the center of the egg by the growth of the sperm aster as stated by Chambers (5), and that the egg pronucleus is carried to the center of the aster by a filamentous structure formed between them. The curved path of egg pronucleus in the fertilized egg is interpreted as the combination of the movement of the center of the aster and the movement of the egg pronucleus toward the center of the aster. The movement and the rotation of the sperm head result from pushing by the tail being engulfed in the egg.  相似文献   

20.
The strictly maternal inheritance of mitochondria and mitochondrial DNA (mtDNA) in mammals is a developmental paradox promoted by an unknown mechanism responsible for the destruction of the sperm mitochondria shortly after fertilization. We have recently reported that the sperm mitochondria are ubiquitinated inside the oocyte cytoplasm and later subjected to proteolysis during preimplantation development (P. Sutovsky et al., Nature 1999; 402:371-372). Here, we provide further evidence for this process by showing that the proteolytic destruction of bull sperm mitochondria inside cow egg cytoplasm depends upon the activity of the universal proteolytic marker, ubiquitin, and the lysosomal apparatus of the egg. Binding of ubiquitin to sperm mitochondria was visualized by monospecific antibodies throughout pronuclear development and during the first embryonic divisions. The recognition and disposal of the ubiquitinated sperm mitochondria was prevented by the microinjection of anti-ubiquitin antibodies and by the treatment of the fertilized zygotes with lysosomotropic agent ammonium chloride. The postfecundal ubiquitination of sperm mitochondria and their destruction was not seen in the hybrid embryos created using cow eggs and sperm of wild cattle, gaur, thus supporting the hypothesis that sperm mitochondrion destruction is species specific. The initial ligation of ubiquitin molecules to sperm mitochondrial membrane proteins, one of which could be prohibitin, occurs during spermatogenesis. Even though the ubiquitin cross-reactivity was transiently lost from the sperm mitochondria during epididymal passage, likely as a result of disulfide bond cross-linking, it was restored and amplified after fertilization. Ubiquitination therefore may represent a mechanism for the elimination of paternal mitochondria during fertilization. Our data have important implications for anthropology, treatment of mitochondrial disorders, and for the new methods of assisted procreation, such as cloning, oocyte cytoplasm donation, and intracytoplasmic sperm injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号