共查询到20条相似文献,搜索用时 0 毫秒
1.
Developmental compartmentalisation of the wing disk of Drosophila 总被引:23,自引:0,他引:23
2.
3.
J.Robert S. Whittle 《Developmental biology》1976,51(2):257-268
Two recessive lethal mutations, l(2)cost and l(2)cos2, in Drosophila melanogaster are described which in the double heterozygote lead to the formation of large duplications and occasional triplications and quadruplications of the anterior part of the wing blade in the region of the costa and triple row of bristles. Clonal analysis with marker mutants following induced mitotic recombination showed that disruption of clonal growth was confined to the area of the duplication. Comparisons were made between clone size in the duplication, clone size in the remainder of the wing, and the size of the duplication. The rate of cell division in the duplication was similar to that in the main wing but continued for a longer period. Variation in size of the duplication was dependent upon the initial number of cells in the duplication. Clone shape in the duplication resembled that in the normal wings. These results are discussed in terms of the possibility that localised cell death initiates the duplication. 相似文献
4.
Summary Of the many mutations known to affect the wing vein pattern we have selected the most extreme in 29 genes for study. Their phenotype can be classified in two major classes: lack-of-veins and excess-of-veins, and in several internally coherent groups. The study of multiple mutant combinations, within groups and between groups, reveals several genetic operations at work in the generation of the vein pattern. The finding that some of these mutations also affect cell proliferation in characteristic ways has prompted a generative model of wing morphogenetic and pattern formation based on cell behaviour properties defined by the corresponding wild-type genes. 相似文献
5.
We have analysed the viability of cellular clones induced by mitotic recombination in Drosophila melanogaster/D. simulans hybrid females during larval growth. These clones contain a portion of either melanogaster or simulans genomes in homozygosity. Analysis has been carried out for the X and the second chromosomes, as well as for the 3L chromosome arm. Clones were not found in certain structures, and in others they appeared in a very low frequency. Only in abdominal tergites was a significant number of clones observed, although their frequency was lower than in melanogaster abdomens. The bigger the portion of the genome that is homozygous, the less viable is the recombinant melano-gaster/simulans hybrid clone. The few clones that appeared may represent cases in which mitotic recombination took place in distal chromosome intervals, so that the clones contained a small portion of either melanogaster or simulans chromosomes in homozygosity. Moreover, Lhr, a gene of D. simulans that suppresses the lethality of male and female melanogaster/simulans hybrids, does not suppress the lethality of the recombinant melanogaster/simulans clones. Thus, it appears that there is not just a single gene, but at least one per tested chromosome arm (and maybe more) that cause hybrid lethality. Therefore, the two species, D. melanogaster and D. simulans, have diverged to such a degree that the absence of part of the genome of one species cannot be substituted by the corresponding part of the genome of the other, probably due to the formation of co-adapted gene complexes in both species following their divergent evolution after speciation. The disruption of those coadapted gene complexes would cause the lethality of the recombinant hybrid clones. 相似文献
6.
The Drosophila BMP5/6/7/8 homolog, glass bottom boat (gbb), has been shown to be involved in proliferation and vein patterning in the wing disk. To better understand the roles for gbb in wing development, as well as its relationship with the Drosophila BMP2/4 homolog decapentaplegic (dpp), we have used clonal analysis to define the functional foci of gbb during wing development. Our results show that gbb has both local and long-range functions in the disk that coincide both spatially and functionally with the established functions of dpp, suggesting that both BMPs contribute to the same processes during wing development. Indeed, comparison of the mutant phenotypes of dpp and gbb hypomorphs and null clones shows that both BMPs act locally along the longitudinal and cross veins to affect the process of vein promotion during pupal development, and long-range from a single focus along the A/P compartment boundary to affect the processes of disk proliferation and vein specification during larval development. Moreover, we show that duplications of dpp are able to rescue many of the phenotypes associated with gbb mutants and clones, indicating that the functions of gbb are at least partially redundant with those of dpp. While this relationship is similar to that described for dpp and the BMP screw (scw) in the embryo, we show that the mechanisms underlying both local and long-range functions of gbb and dpp in the wing are different. For the local foci, gbb function is confined to the regions of the veins that require the highest levels of dpp signaling, suggesting that gbb acts to augment dpp signaling in the same way as scw is proposed to do in the embryo. However, unlike scw-dependent signals in the embryo, these gbb signals are not transduced by the Type I receptor saxophone (sax), thus, the cooperativity between gbb and dpp is not achieved by signaling through distinct receptor complexes. For the long-range focus along the A/P compartment boundary, gbb function does not appear to affect the high point of the dpp gradient, but, rather, appears to be required for low points, which is the reciprocal of the relationship between dpp and scw in the embryo. Moreover, these functions of gbb also do not require the Type I receptor sax. Given these results, we conclude that the relationships between gbb and dpp in the wing disk represent novel paradigms for how multiple BMP ligands signal during development, and that signaling by multiple BMPs involves a variety of different inter-ligand relationships that depend on the developmental context in which they act. 相似文献
7.
We have combined high-resolution two-dimensional (2-D) gel electrophoresis and mass spectrometry with the aim of identifying proteins represented in the 2-D gel database of the wing imaginal discs of Drosophila melanogaster. First, we obtained a high-resolution 2-D gel pattern of [35S]methionine + [35S]cysteine-labeled polypeptides of Schneider cells, a permanent cell line of Drosophila embryonic origin, and compared it with the standard pattern of polypeptides of the wing imaginal disc. These studies reveal qualitative and quantitative differences between the two samples, but have more than 600 polypeptides in common. Second, we carried out preparative 2-D polyacrylamide gel electrophoresis using Schneider cells mixed with radioactively labeled wing imaginal discs in order to isolate some of the shared polypeptides and characterize them by matrix-assisted laser desorption/ionization-time of flight MALDI-TOF analysis. Using this strategy we identified 100 shared proteins represented in the database, and in each case confirmed their identity by MALDI-TOF/TOF analysis. 相似文献
8.
Vincent Debat Raphael Cornette Abraham B. Korol Eviatar Nevo David Soulet Jean R. David 《Journal of genetics》2008,87(4):407-419
Environmental stress has been suggested to be a major evolutionary force, both through inducing strong selection and because
of its direct impact on developmental buffering processes that alter the evolvability of organisms. In particular, temperature
has attracted much attention because of its importance as an ecological feature and the relative ease with which it can be
experimentally manipulated in the lab. Evolution Canyon, Lower Nahal Oren, Israel, is a well studied natural site where ecological
parameters are suspected to drive evolutionary differentiation. In this study, using Drosophila melanogaster isofemale lines derived from wild flies collected on both slopes of the canyon, we investigated the effect of developmental
temperature upon the different components of phenotypic variation of a complex trait: the wing. Combining geometric and traditional
morphometrics, we find only limited evidence for a differentiation among slopes. Investigating simultaneously phenotypic plasticity,
genetic variation among isofemale lines, variation among individuals and fluctuating asymmetry, we could not identify a consistent
effect of the stressful conditions encountered on the south facing slope. The prevailing structuring effect is that of the
experimentally manipulated temperature which clearly influences wing mean size and shape. Variability, in contrast, is not
consistently affected by temperature. Finally, we investigated the specific relationship between individual variation and
fluctuating asymmetry. Using metric multi-dimensional scaling we show that the related patterns of wing shape variation are
not identical, supporting the view that the underlying developmental processes are to a certain extent different. 相似文献
9.
Summary Genetically marked maroon-like (mal) clones were induced by mitotic recombination with X-rays at the blastoderm stage in mal/mal
+ heterozygotes and were analysed in differentiated Malpighian tubules (MT). Marked cells were not confined to single anterior (MA) or posterior (MP) tubules, but were distributed among the four tubules. About 70% of the clones with two or more cells were fragmented, i.e. mal cells were separated by wild-type cells. Since the clones contain, on average, 6 cells and the differentiated MT consist of 484 cells (2 × 136 MA cells, 2 × 106 MP cells), we estimate that there are about 80 cells in the blastoderm anlage which on average pass through two to three mitoses. With increasing radiation doses (254 R, 635 R, 1270 R) a linear increase in clone frequency is observed. The mean sizes and size distributions of clones, however, remain unchanged. Since the increasing radiation dose also results in fewer differentiated Malpighi cells, we assume that regeneration does not occur. Therefore, size distributions of marked clones presumably represent real mitotic patterns in normogenesis. We suggest that essentially three successive mitoses take place, with a decreasing fraction of cells showing mitotic activity. Only a small fraction of cells goes through a fourth or even a fifth mitosis. Marked non-Minute clones induced in Minute heterozygotes are more frequent, but are not larger than non-Minute clones in wild-type background. Therefore, compartment boundaries cannot be recognized by this method. However, frequencies of marked cells found simultaneously in MA and MP pairs or in several single tubules of the same individuals are significantly higher than frequencies of multiple recombination events predicted by the Poisson distribution. From this, we conclude that neither the MA pair nor the MP pair nor single tubules represent compartments of the MT anlage.On the occasion of his 60th birthday, this work is dedicated to Prof. Dr. H.J. Becker, who initiated cell lineage studies in Drosophila 相似文献
10.
Jacobsen TL Cain D Paul L Justiniano S Alli A Mullins JS Wang CP Butchar JP Simcox A 《Genetics》2006,174(4):1973-1982
Differential gene expression is the major mechanism underlying the development of specific body regions. Here we assessed the role of genes differentially expressed in the Drosophila wing imaginal disc, which gives rise to two distinct adult structures: the body wall and the wing. Reverse genetics was used to test the function of uncharacterized genes first identified in a microarray screen as having high levels of expression in the presumptive wing. Such genes could participate in elaborating the specific morphological characteristics of the wing. The activity of the genes was modulated using misexpression and RNAi-mediated silencing. Misexpression of eight of nine genes tested caused phenotypes. Of 12 genes tested, 10 showed effective silencing with RNAi transgenes, but only 3 of these had resulting phenotypes. The wing phenotypes resulting from RNAi suggest that CG8780 is involved in patterning the veins in the proximal region of the wing blade and that CG17278 and CG30069 are required for adhesion of wing surfaces. Venation and apposition of the wing surfaces are processes specific to wing development providing a correlation between the expression and function of these genes. The results show that a combination of expression profiling and tissue-specific gene silencing has the potential to identify new genes involved in wing development and hence to contribute to our understanding of this process. However, there are both technical and biological limitations to this approach, including the efficacy of RNAi and the role that gene redundancy may play in masking phenotypes. 相似文献
11.
12.
The wing of Drosophila melanogaster has long been used as a model system to characterize intermolecular interactions important in development. Implicit in our understanding of developmental processes is the proper trafficking and sorting of signaling molecules, although the precise mechanisms that regulate membrane trafficking in a developmental context are not well studied. We have therefore chosen the Drosophila wing to assess the importance of SNARE-dependent membrane trafficking during development. N-Ethylmaleimide-sensitive fusion protein (NSF) is a key component of the membrane-trafficking machinery and we constructed a mutant form of NSF whose expression we directed to the developing wing margin. This resulted in a notched-wing phenotype, the severity of which was enhanced when combined with mutants of VAMP/Synaptobrevin or Syntaxin, indicating that it results from impaired membrane trafficking. Importantly, we find that the phenotype is also enhanced by mutations in genes for wingless and components of the Notch signaling pathway, suggesting that these signaling pathways were disrupted. Finally, we used this phenotype to conduct a screen for interacting genes, uncovering two Notch pathway components that had not previously been linked to wing development. We conclude that SNARE-mediated membrane trafficking is an important component of wing margin development and that dosage-sensitive developmental pathways will act as a sensitive reporter of partial membrane-trafficking disruption. 相似文献
13.
Kiger JA Natzle JE Kimbrell DA Paddy MR Kleinhesselink K Green MM 《Developmental biology》2007,301(1):178-191
The final step in morphogenesis of the adult fly is wing maturation, a process not well understood at the cellular level due to the impermeable and refractive nature of cuticle synthesized some 30 h prior to eclosion from the pupal case. Advances in GFP technology now make it possible to visualize cells using fluorescence after cuticle synthesis is complete. We find that, between eclosion and wing expansion, the epithelia within the folded wing begin to delaminate from the cuticle and that delamination is complete when the wing has fully expanded. After expansion, epithelial cells lose contact with each other, adherens junctions are disrupted, and nuclei become pycnotic. The cells then change shape, elongate, and migrate from the wing into the thorax. During wing maturation, the Timp gene product, tissue inhibitor of metalloproteinases, and probably other components of an extracellular matrix are expressed that bond the dorsal and ventral cuticular surfaces of the wing following migration of the cells. These steps are dissected using the batone and Timp genes and ectopic expression of alphaPS integrin, inhibitors of Armadillo/beta-catenin nuclear activity and baculovirus caspase inhibitor p35. We conclude that an epithelial-mesenchymal transition is responsible for epithelial delamination and dissolution. 相似文献
14.
Distribution of the enzyme aldehyde oxidase (AO) within the pouch of the mature wing disc is precise and differential. General locations of compartmental boundaries have been identified by fate mapping and studies of AO distribution. The suspected locations of the boundaries were verified by analyzing the distribution of AO-negative cells within an AO-stained background in gynandromorphs and in X-ray-induced clones of AO-negative cells. The anterior/posterior border appeared slightly anterior to the junction of the AO+ anterior presumptive wing surfaces and AO? posterior wing surfaces. A narrow band of AO+ cells extending proximodistally on both presumptive wing surfaces belongs to the posterior compartment. Two dorsal/ventral (dor./vent.) restrictions were found. The dor./vent. restriction equivalent to the dor./vent. border found in the adult wing was located at the ventral most edge of the AO-stained presumptive wing margin. A second restriction which was less strictly obeyed was found on the dorsal edge of the wing margin. We conclude that the whole presumptive wing margin is part of the dorsal compartment. Within the anterior wing margin an intensively stained oval was also found to be clonally restrictive. Therefore, territories were found within the prospective wing margin for which no such features have been identified in the adult Drosophila melanogaster wing. 相似文献
15.
Dynamical analysis of the regulatory network defining the dorsal-ventral boundary of the Drosophila wing imaginal disc
下载免费PDF全文

The larval development of the Drosophila melanogaster wings is organized by the protein Wingless, which is secreted by cells adjacent to the dorsal-ventral (DV) boundary. Two signaling processes acting between the second and early third instars and between the mid- and late third instar control the expression of Wingless in these boundary cells. Here, we integrate both signaling processes into a logical multivalued model encompassing four cells, i.e., a boundary and a flanking cell at each side of the boundary. Computer simulations of this model enable a qualitative reproduction of the main wild-type and mutant phenotypes described in the experimental literature. During the first signaling process, Notch becomes activated by the first signaling process in an Apterous-dependent manner. In silico perturbation experiments show that this early activation of Notch is unstable in the absence of Apterous. However, during the second signaling process, the Notch pattern becomes consolidated, and thus independent of Apterous, through activation of the paracrine positive feedback circuit of Wingless. Consequently, we propose that appropriate delays for Apterous inactivation and Wingless induction by Notch are crucial to maintain the wild-type expression at the dorsal-ventral boundary. Finally, another mutant simulation shows that cut expression might be shifted to late larval stages because of a potential interference with the early signaling process. 相似文献
16.
P. Babu 《Molecular & general genetics : MGG》1977,151(3):289-294
Summary The properties of the mutation wingless discovered by Sharma are discussed. It appears that this mutation interferes with a step leading to normal wing-notum compartmentation of the wing disk. From the study of mutational mosaics in the wingless locus we conclude that mutations in this gene can be autonomous in mosaics. 相似文献
17.
Mark A. Mortin Norbert Perrimon J. Jose Bonner 《Molecular & general genetics : MGG》1985,199(3):421-426
Summary Two mutations in the gene, RpII215, were analyzed to determine their effects on cell differentiation and proliferation. The mutations differ in that one, RpII215
ts(ts), only displays a conditional recessive lethality, while the other, RpII215
Ubl (Ubl), is a recessive lethal mutation that also displays a dominant mutant phenotype similar to that caused by the mutation Ultrabithorax (Ubx). Ubl causes a partial transformation of the haltere into a wing; however, this transformation is more complete in flies carrying both Ubl and Ubx. The present study shows that patches of Ubl/- tissue in gynandromorphs are morphologically normal. Cuticle that has lost the wild-type copy of the RpII215 locus fails to show a haltere to wing transformation, nor does it show the synergistic enhancement of Ubx by Ubl. We conclude that an interaction between the two RpII215 alleles, Ubl and RpII215
+, is responsible for the mutant phenotype. Gynandromorphs carrying the ts allele, when raised at permissive temperature, display larger patches of ts/- cuticle than expected, possibly indicating that the proliferation of ts/+ cells is reduced. This might result from an antagonistic interaction between different RpII215 alleles. Classical negative complementation does not appear to be the cause of the antagonistic interaction described above, as only one RpII215 subunit is thought to be present in an active multimeric polymerase enzyme. We have therefore coined the term negative heterosis to describe the aforementioned interactions.We also observed that the effects of mutationally altered RNA polymerase II on somatic cells are different from its effects on germ cells. Mutant somatic cells (either Ubl/- or ts/-, the latter shifted to restrictive temperature) reduce cell proliferation, but otherwise do not appear to disrupt cell differentiation. However, mutant germ cells often differentiate into morphologically abnormal oocytes. 相似文献
18.
Morphogenesis of the Drosophila wing depends on a series of cell-cell and cell-extracellular matrix interactions. During pupal wing development, two secreted proteins, encoded by the short gastrulation (sog) and decapentaplegic (dpp) genes, vie to position wing veins in the center of broad provein territories. Expression of the Bmp4 homolog dpp in vein cells is counteracted by expression of the Bmp antagonist sog in intervein cells, which results in the formation of straight veins of precise width. We screened for genetic interactions between sog and genes encoding a variety of extracellular components and uncovered interactions between sog and myospheroid (mys), multiple edematous wing (mew) and scab (scb), which encode betaPS, alphaPS1 and alphaPS3 integrin subunits, respectively. Clonal analysis reveals that integrin mutations affect the trajectory of veins inside the provein domain and/or their width and that misexpression of sog can alter the behavior of cells in such clones. In addition, we show that a low molecular weight form of Sog protein binds to alphaPS1betaPS. We find that Sog can diffuse from its intervein site of production into adjacent provein domains, but only on the dorsal surface of the wing, where Sog interacts functionally with integrins. Finally, we show that Sog diffusion into provein regions and the reticular pattern of extracellular Sog distribution in wild-type wings requires mys and mew function. We propose that integrins act by binding and possibly regulating the activity/availability of different forms of Sog during pupal development through an adhesion independent mechanism. 相似文献
19.
Clonal analysis of determination dynamics in cultures of imaginal disks in Drosophila melanogaster 总被引:5,自引:0,他引:5
W Gehring 《Developmental biology》1967,16(5):438-456