首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To test the hypothesis that endogenous opioids modulate fetal lung development, separate groups of pregnant rabbits received daily injections of saline, morphine (1 mg/kg body wt), or the opioid antagonist naloxone (0.4 and 5.0 mg) for 10 days during their last trimester of pregnancy. The corresponding groups of fetuses were then delivered prematurely on day 28 of gestation (term approximately 31 days) and evaluated with respect to differences in body weight, lung weight, and the ratios of wet to dry lung weight and lung dry weight to body weight, the static inflation and deflation air and saline pressure-volume (P-V) characteristics of the lungs, and lung morphology. Mean values for body weight, lung weight, and the ratios of lung wet to dry weight and lung dry weight to body weight were not significantly different among the saline control (C), morphine (M)-, and naloxone (NLX)-treated fetuses. On the other hand, the fetal air P-V curves varied significantly (P less than 0.001), wherein the M-treated group depicted increased lung distensibility and alveolar stability on lung deflation, whereas the opposite was obtained in the NLX-treated fetuses. Moreover, morphometric analyses demonstrated that the mean alveolar air space-to-tissue ratio in lungs from M-treated fetuses were significantly greater than that observed either in C or in NLX-treated fetuses (P less than 0.05); however, the air space-to-tissue ratio did not significantly vary between the C and NLX-treated animals. These observations provide new evidence that endogenous opioids enhance fetal lung maturation.  相似文献   

2.
Pressure-volume relationships and collagen and elastin contents were measured in the lungs of fetal sheep infused either with saline (n = 4), thyrotrophin-releasing hormone (TRH; n = 6), cortisol (n = 9) or TRH plus cortisol (n = 10) at 128 days of gestation (term = 149 days) for 7 days. Lung distensibility (V40 = 1.8 +/- 0.1 ml/g wet wt; mean +/- SD) and stability (V5 = 0.6 +/- 0.1) increased along with collagen (C) (10.1 +/- 2.7 micrograms/mg) and elastin (E) contents (128 +/- 35 ng/mg) in the animals infused with TRH plus cortisol and were significantly higher (p < 0.05) than those observed in TRH (V40 0.62 +/- 0.07; V5 0.32 +/- 0.04; C 3.53 +/- 1.3; E 38.2 +/- 8.3), cortisol (V4 0.66 +/- 0.6; V5 0.27 +/- 0.03; C 4.27 +/- 0.8; E 41.02 +/- 12.7) or saline infused fetuses (V40 0.40 +/- 0.1; V5 0.20 +/- 0.06; C 3.28 +/- 0.9; E 31.5 +/- 9.2). Plasma concentrations of prolactin (PRL), triiodothyronine (T3) and cortisol (F) were also higher in the group of fetuses infused with both hormones in comparison with the other groups. In fetuses treated with TRH plus cortisol, PRL (32 +/- 8.3 ng/ml) and T3 (308.3 +/- 36 micrograms/dl) were significantly higher than in those infused with cortisol alone (PRL 3.7 +/- 2.3; T3 128 +/- 30) or with saline (PRL 4.2 +/- 1.6; T3 < 5 micrograms/dl). In the group treated with TRH alone, PRL also increased significantly (37 +/- 6.4), but T3 increased only slightly (18 +/- 3.4).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of cortisol on the rate of choline incorporation into tissue phosphatidylcholine was investigated in lung explants from fetal rabbits of 19-28 days gestational age. The explants were incubated in medium with or without fetal calf serum for up to 7 days. When lung tissues were incubated in serum-free medium, a stimulatory effect of cortisol on tissue phosphatidylcholine synthesis was found in explants from 21-, 24-, 26- and 28-day fetal rabbits; a stimulatory effect of cortisol was observed in 19-day fetal lung explants only if fetal calf serum was present in the culture medium. To assess directly the effect of cortisol on the synthesis of lamellar body phosphatidylcholine, choline incorporation into phosphatidylcholine associated with a purified lamellar body fraction isolated from lung explants of 21- and 28-day fetal rabbits was also investigated. Cortisol caused a marked stimulation of synthesis and accumulation of lamellar body phosphatidylcholine in lung explants from both 21- and 28-day fetal rabbits. The magnitude of the stimulatory effect of cortisol on the rate of synthesis of lamellar body phosphatidylcholine was always greater than the effect of cortisol on the rate of choline incorporation into lipids of tissue homogenates. The relative rates of synthesis of lamellar body phosphatidylinositol and phosphatidylglycerol were also significantly altered in lung explants from 21- and 28-day fetal rabbits by cortisol treatment. Lamellar bodies that were formed initially in the fetal lung explants were enriched in phosphatidylcholine and phosphatidylinositol and had a relatively low phosphatidylglycerol content. With cortisol treatment there was a decrease in the relative rate of synthesis of lamellar body phosphatidylinositol and an increase in the relative rate of synthesis of phosphatidylglycerol. The stimulatory effect of cortisol on the synthesis of lamellar body phosphatidylcholine was observed at an earlier time-point of incubation than was the effect of cortisol on the relative rates of synthesis of lamellar body phosphatidylinositol and phosphatidylglycerol. The temporal sequence of the cortisol-induced changes in the synthesis of lamellar body glycerophospholipids, therefore, reflects that which occurs with maturation in vivo.  相似文献   

4.
The addition of cortisol (5.5 × 10?6 M) to the culture media of monolayer cultures of midgestation human fetal lung cells resulted in marked enhancement of growth as monitored by DNA accumulation. In contrast, the same molar concentration of cortisol led to growth inhibition of cultures of fetal larynx, trachea and esophagus (LTE) and of skin fibroblasts. Cortisone also promoted growth, but to a lesser extent than cortisol. The lung cells were capable of forming cortisol from cortisone, the magnitude of this conversion increasing with the length of time the cells were maintained in culture and being greater in cells which had previously been exposed to cortisol. These findings are interpreted as suggesting a role for cortisol and cortisone in human fetal lung growth.  相似文献   

5.
The effects of fetal infusions of cortisol and thyrotropin-releasing hormone (TRH) singly and together on pressure-volume relationships and saturated phosphatidylcholine (SPC) concentrations in the lungs were studied in 28 fetal sheep delivered at 128 days of gestation. Four groups each of 7 fetuses were infused with either saline (for 156 h), TRH (25 micrograms/h in 60-s pulses for 156 h), TRH (for 156 h) combined with cortisol (1 mg/h for 84 h), or cortisol (for 84 h). Cortisol had no effect on SPC concentrations, whereas both TRH and cortisol plus TRH increased the concentration of SPC in lavage fluid but not lung tissue. Neither cortisol nor TRH significantly affected lung distensibility [V40; 0.64 +/- 0.04 and 0.57 +/- 0.10 (SE) ml/g, respectively, vs. 0.41 +/- 0.03 ml/g in controls] or stability (V5; 0.24 +/- 0.01 and 0.35 +/- 0.07 ml/g vs. 0.24 +/- 0.03 ml/g), whereas treatment with a combination of the two hormones was associated with a fourfold increase in V40 (1.70 +/- 0.16 ml/g) and V5 (1.03 +/- 0.15 ml/g). Since raised concentrations of cortisol, triiodothyronine, and estradiol-17 beta (treatment with cortisol) had no effect on V40 and V5, whereas similar hormonal changes associated with elevated prolactin levels (treatment with cortisol plus TRH) had marked effects, we conclude that prolactin plays an essential part in the synergism of cortisol and TRH.  相似文献   

6.
7.
8.
Phosphatidylglycerol is an important component of pulmonary surfactant. Previous studies have shown that direct administration of corticosteroids of thyroxine to the fetus during the latter part of gestation results in accelerated lung maturation with increased surfactant production. We have shown that administration of cortisol to fetal rabbits at 24 days' gestation results 3 days later in a significant increase in the activity of pulmonary glycerolphosphate phosphatidyltransferase, an enzyme involved in the synthesis of phosphatidylglycerol. The activity of the liver enzyme was not affected. Choline phosphotransferase, CDPdiglyceride-inositol phosphatidyltransferase, lysophosphatidic acid acyltransferase and lysolecithin acyltransferase activities were not altered significantly by cortisol treatment. Thyroxine treatment had no effect on any of the enzymes of phospholipid or fatty acid biosynthesis studied.  相似文献   

9.
G Giannopoulos 《Steroids》1974,23(6):845-853
Lungs of rabbit fetuses at 28 days of gestation were incubated with tritium-labeled cortisone (17α,21-dihydroxy-4-pregnene-3,11,20-trione) or Cortisol (11β,17α,21-trihydroxy-4-pregnene-3,20-dione). The fetal lungs metabolized efficiently cortisone yielding cortisol as the major product (64–71% conversion). Cortisol was poorly metabolized, only 10–14% being converted to cortisone and 68–75% of the substrate being recovered unchanged. A small amount of cortisone (5–7% of tissue radioactivity) was also found in the lungs twenty minutes after injection of labeled cortisol to the fetus in utero. Incubation of fetal lungs with labeled cortisone at 37° resulted in specific uptake and binding of radioactivity (predominantly cortisol) to nuclear macromolecules. The amount of cortisol bound to nuclear macromolecules was similar whether the tissue was incubated with cortisol or cortisone. These results demonstrate that the lungs of the rabbit fetus have the capacity to convert the biologically inactive cortisone to the biologically active cortisol, the reverse reaction occurring only to a limited extent.  相似文献   

10.
Perfusion of the isolated 26 day fetal rabbit lung with 3H-cortisone resulted in its conversion to 3H-cortisol and release into the perfusate. Little conversion of 14C-cortisol to 14C-cortisone occurred. Quantitative study of homogenized fetal rabbit lung revealed the development of both the cofactor and the enzyme for 11β-hydroxy steroid dehydrogenase activity between 21 and 29 days gestation. These results suggest increasing production of cortisol from cortisone by the fetal rabbit lung as a function of gestational age. This conversion may be of significance with respect to both lung development and parturition, both events being accelerated by cortisol treatment.  相似文献   

11.
12.
Henschke P  Vorum H  Honoré B  Rice GE 《Proteomics》2006,6(6):1957-1962
The aim of this study was to test the hypothesis that acute in vitro exposure of prematurely delivered fetal rabbit lungs to hyperoxic conditions will induce the expression of an adaptive cassette of proteins that mediates antioxidant and inflammatory processes. To test this hypothesis, ex situ fetal rabbit lung explants were prepared from New Zealand white rabbits delivered by cesarean section on day 29 of gestation and incubated under air (21% O2; 5% CO2) or hyperoxic (95% O2; 5% CO2) atmospheres. Total tissue protein was extracted following incubation and subjected to 2-DE. Using this technique, 1500-2000 protein spots were resolved per gel. Treatment-dependent, differentially expressed proteins were identified by image analysis (Melanie II) and MALDI-TOF MS and MALDI-MS/MS. The analysis identified 12 protein spots that were differentially expressed by 1.5-fold or more (p<0.05) by exposure to hyperoxic conditions. Six of these differentially expressed proteins were identified as vimentin, annexin I, inorganic pyrophosphatase, prohibitin, an N-terminal fragment of ATP synthase and heat shock protein 27. The data obtained are consistent with the roles of these proteins in mediating cellular response to oxidative stress and in regulating cell proliferation.  相似文献   

13.
Males and females exhibit different stages of lung development at the same gestation with males lagging behind. We hypothesized that one of the mechanisms responsible for the sex-specific difference in fetal lung maturation is a delay in the onset of epidermal growth factor (EGF) activity in the male fetal lung. EGF influences growth and differentiation during development. We studied the effects of EGF on the incorporation of glycerol into lamellar body disaturated phosphatidylcholine (DSPC) in sex-specific fetal rabbit lung explants prepared at 21 and 24 days gestation (term 31 days). The explants were maintained in Waymouth's media + 10% stripped fetal calf serum with or without EGF (10 ng/ml). The incorporation of [1,3-14C]glycerol into lamellar body DSPC was assessed after 3, 5, or 7 days of culture. Female lung explants prepared at 21 days of gestation had increased incorporation of glycerol into DSPC over time in response to EGF treatment. Male lung explants prepared at 21 days did not respond to EGF treatment. In explants prepared at 24 days gestation, baseline glycerol incorporation into DSPC was higher in female as compared to male fetal lung explants. EGF-responsiveness was also sex-specific in these more mature explants, with the male explants now responding to EGF with a consistent increase in the incorporation of glycerol into lamellar body DSPC. We conclude that one of the mechanisms responsible for the lag in male fetal lung development is a delay in the onset of EGF activity.  相似文献   

14.
The role of lysosomal enzyme acid alpha-glucosidase in fetal lung development was investigated with the aid of a specific inhibitor, the pseudosaccharide acarbose. The drug was added to a Waymouth culture medium of fetal rat lung explants cultivated for 48 h from gestational stage 19.5 days, an in vitro system previously shown to allow morphological and biochemical maturation of alveolar epithelium. Glycogenolysis was reduced by 40% as compared with tissue cultivated on control medium, which means that alpha-glucosidase could account for as much as 40% of fetal lung glycogenolysis, the remaining 60% being presumably achieved by cytosolic phosphorylase and by a microsomal neutral alpha-glucosidase. By the same time, the increase of phospholipids of surfactant fraction extracted from cultivated explants was partially inhibited: total and saturated phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol were about 30-40% lower than in lungs cultivated on control medium. It should be emphasized that DNA concentration and increases in non-surfactant phospholipids were unchanged by the drug. alpha-Glucosidase activity was evidenced in the lysosomal fraction, in the microsomal fraction and, although in lower amounts, in the surfactant fraction extracted from term fetal lung. The results suggest that lysosomal alpha-glucosidase plays a major role in lung maturation and could facilitate glycogenolysis for the specific use of glycogen stores in providing substrates for surfactant phospholipid biosynthesis.  相似文献   

15.
1. Maternal administration of betamethasone (0.2 mg/kg) on day 25 or 26 of gestation produced a significant decrease in the lung/body weight ratio of the rabbit fetuses within 24 h. 2. The incorporation of [14C]choline but not [14C]ethanolamine into the lipids of fetal lung slices was significantly increased, indicating that there was a specific effect on phosphatidylcholine synthesis. 3. The activities of a number of marker enzymes for subcellular organelles were elevated, especially in the lungs of fetuses delivered on day 26. The increases in monoamine oxidase (mitochondrial outer membrane), beta-glycerophosphatase and aqueously dispersed phosphatidic acid-dependent phosphatidic acid phosphohydrolase (lysosomal) activities were significant. 4. Although the activity of cholinephosphotransferase was not affected by glucocorticoid treatment, the activities of glycerol-3-phosphate phosphatidyltransferase and the activities of two enzymes in the auxiliary pathways for the production of disaturated phosphatidylcholine (lysophosphatidylcholine:lysophosphatidylcholine transacylase and lysophosphatidylcholine:acyl-CoA acyl-transferase) were significantly increased. 5. Membrane-bound phosphatidic acid-dependent phosphatidic acid phosphohydrolase activity was elevated to a lesser extent than the aqueously dispersed phosphatidate-dependent activity and this increase was not significant. 6. The incorporation of E135S]methionine into protein by slices of fetal lung was significantly reduced after maternal treatment with betamethosone. 7. These results are consistent with the general view that glucocorticoids can induce pulmonary maturation and surfactant production in the rabbit fetus but indicate that some of the former hypotheses regarding the mechanism by which lipid synthesis is accelerated must be reevaluated.  相似文献   

16.
17.
Human fetal lung tissue obtained during the second trimester was cultured as organ culture with or without cortisol. The effect of cortisol on the phospholipid metabolism, as related to the appearance of osmiophilic lamellar bodies and the localisation of newly incorporated choline, was studied. In cortisol-treated explants, the concentration of saturated lecithins and the incorporation of (Me-3H)-choline into saturated lecithins increases significantly concomitantly with an increased number of osmiophilic lamellar bodies. The labelled choline is predominantly associated with these bodies. The obtained results indicate that cortisol accelerates the synthesis of pulmonary surfactant in the human fetal lung as early as in the second trimester.  相似文献   

18.
Cortisol has minimal effects on lung maturation in fetal sheep before 130 days gestation. To test whether there is enhancement of cortisol action by other hormones, cortisol (F), triiodothyronine (T3), epinephrine (E), prolactin (PRL), and epidermal growth factor (EGF), alone or in combination, were infused into fetal sheep for 84 h between 124 and 128 days gestation. A mixture of F + T3 + PRL, but not any combination of two hormones, increased both distensibility [1.71 +/- 0.12 (SE) ml of air/g wet wt at 40 cmH2O, V40] and stability (1.16 +/- 0.09 ml of air per g wet wt at 5 cmH2O, V5) to near full-term values, above values resulting from treatment with F alone (0.91 +/- 0.12 and 0.43 +/- 0.09 ml/g, P less than 0.01). Only F had an effect when given alone, V40 increasing (P less than 0.05). Treatment with F + T3 (0.81 +/- 0.18 ml/g) and F + E (0.77 +/- 0.07 ml/g) increased V5 above values obtained with F alone (P less than 0.05). Alveolar saturated phosphatidylcholine (SPC) was higher after treatment with F + T3 (161 +/- 52 micrograms/g), F + T3 + PRL (156 +/- 53 micrograms/g, P less than 0.05), and F + E (113 +/- 40 micrograms/g, P = 0.07) than after F (12 +/- 3 micrograms/g). We conclude that F, T3, and PRL have a synergistic effect on the development of distensibility and stability of the ovine fetal lung.  相似文献   

19.
In the present study we investigated the maturation of the surfactant phospholipids and the role of fetal sex on the effect of betamethasone in male and female rabbit fetuses. Betamethasone was administered to the doe (0.2 mg/kg intramuscularly) 42 and 18 h prior to killing. The fetuses were studied at 27 and 28 days from conception. Results from the alveolar lavage show that male fetuses tended to have a lower disaturated phosphatidylcholine/sphingomyelin ratio and lower levels of phosphatidylinositol. Phosphatidylglycerol was detected in trace amounts. This was apparently due to the high extracellular levels of myo-inositol inhibiting the synthesis of surfactant phosphatidylglycerol while increasing the synthesis of surfactant phosphatidylinositol. Betamethasone increased the recovery of disaturated phosphatidylcholine and phosphatidylinositol from the lung lavage in both sexes. As studied in lung slices in vitro, the betamethasone treatment decreased the incorporation of glucose into phospholipids, including into the fatty acid moiety of disaturated phosphatidylcholine, although it had no significant effect on the incorporation of glucose into the glycerol moiety of disaturated phosphatidylcholine. However, the addition of palmitate increased the incorporation of glucose into the glycerol moiety of disaturated phosphatidylcholine. The betamethasone treatment did not increase the incorporation of [1-14C]pyruvate into disaturated phosphatidylcholine. Following betamethasone administration, the availability of fatty acids may become rate-limiting for the synthesis of surfactant phospholipids. Betamethasone increased the activities of phosphatidic acid phosphohydrolase and phosphatidate cytidyltransferase in a fraction of microsomal membranes. The present evidence suggests that the glucocorticoid-induced lung maturation and the maturation of the normal lung are associated with an increase in the activity of the enzymes which are involved in metabolizing phosphatidic acid to neutral and acidic surfactant secretion of the male fetus was not explained by possible sex-related differences in the biosynthesis of the phospholipids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号