首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have revealed that the stretch reflex responses of both ankle flexor and extensor muscles are coaugmented in the early stance phase of human walking, suggesting that these coaugmented reflex responses contribute to secure foot stabilization around the heel strike. To test whether the reflex responses mediated by the stretch reflex pathway are actually induced in both the ankle flexor and extensor muscles when the supportive surface is suddenly destabilized, we investigated the electromyographic (EMG) responses induced after a sudden drop of the supportive surface at the early stance phase of human walking. While subjects walked on a walkway, the specially designed movable supportive surface was unexpectedly dropped 10 mm during the early stance phase. The results showed that short-latency reflex EMG responses after the impact of the drop (<50 ms) were consistently observed in both the ankle flexor and extensor muscles in the perturbed leg. Of particular interest was that a distinct response appeared in the tibialis anterior muscle, although this muscle showed little background EMG activity during the stance phase. These results indicated that the reflex activities in the ankle muscles certainly acted when the supportive surface was unexpectedly destabilized just after the heel strike during walking. These reflex responses were most probably mediated by the facilitated stretch reflex pathways of the ankle muscles at the early stance phase and were suggested to be relevant to secure stabilization around the ankle joint during human walking.  相似文献   

2.
During human walking, plantar flexor activation in late stance helps to generate a stable and economical gait pattern. Because plantar flexor activation is highly mediated by proprioceptive feedback, the nervous system must modulate reflex pathways to meet the mechanical requirements of gait. The purpose of this study was to quantify ankle joint mechanical output of the plantar flexor stretch reflex response during a novel unexpected gait perturbation. We used a robotic ankle exoskeleton to mechanically amplify the ankle torque output resulting from soleus muscle activation. We recorded lower-body kinematics, ground reaction forces, and electromyography during steady-state walking and during randomly perturbed steps when the exoskeleton assistance was unexpectedly turned off. We also measured soleus Hoffmann- (H-) reflexes at late stance during the two conditions. Subjects reacted to the unexpectedly decreased exoskeleton assistance by greatly increasing soleus muscle activity about 60 ms after ankle angle deviated from the control condition (p<0.001). There were large differences in ankle kinematic and electromyography patterns for the perturbed and control steps, but the total ankle moment was almost identical for the two conditions (p=0.13). The ratio of soleus H-reflex amplitude to background electromyography was not significantly different between the two conditions (p=0.4). This is the first study to show that the nervous system chooses reflex responses during human walking such that invariant ankle joint moment patterns are maintained during perturbations. Our findings are particularly useful for the development of neuromusculoskeletal computer simulations of human walking that need to adjust reflex gains appropriately for biomechanical analyses.  相似文献   

3.
ABSTRACT: Bryanton, MA, Kennedy, MD, Carey, JP, and Chiu, LZF. Effect of squat depth and barbell load on relative muscular effort in squatting. J Strength Cond Res 26(10): 2820-2828, 2012-Resistance training is used to develop muscular strength and hypertrophy. Large muscle forces, in relation to the muscle's maximum force-generating ability, are required to elicit these adaptations. Previous biomechanical analyses of multi-joint resistance exercises provide estimates of muscle force but not relative muscular effort (RME). The purpose of this investigation was to determine the RME during the squat exercise. Specifically, the effects of barbell load and squat depth on hip extensor, knee extensor, and ankle plantar flexor RME were examined. Ten strength-trained women performed squats (50-90% 1 repetition maximum) in a motion analysis laboratory to determine hip extensor, knee extensor, and ankle plantar flexor net joint moment (NJM). Maximum isometric strength in relation to joint angle for these muscle groups was also determined. Relative muscular effect was determined as the ratio of NJM to maximum voluntary torque matched for joint angle. Barbell load and squat depth had significant interaction effects on hip extensor, knee extensor, and ankle plantar flexor RME (p < 0.05). Knee extensor RME increased with greater squat depth but not barbell load, whereas the opposite was found for the ankle plantar flexors. Both greater squat depth and barbell load increased hip extensor RME. These data suggest that training for the knee extensors can be performed with low relative intensities but require a deep squat depth. Heavier barbell loads are required to train the hip extensors and ankle plantar flexors. In designing resistance training programs with multi-joint exercises, how external factors influence RME of different muscle groups should be considered to meet training objectives.  相似文献   

4.
The morphogenesis of muscle spindles in the mouse extensor digitorum longus was studied in closely spaced, serial, ultrathin transverse sections, permitting evaluation of the developing spindles' three-dimensional cytoarchitecture. Afferent nerve terminals are identifiable as early as 15 days in utero, and the adult number of spindles is present at 17 days in utero. By establishing continuity between the clearly identifiable equatorial regions and the polar regions, which are morphologically indistinguishable from surrounding extrafusal fibers, it could be determined that fusimotor innervation was present by the 19th day of the in utero development. In all spindles examined, the efferent innervation occurred extracapsularly. At birth, the adult number (four or five) of intrafusal fibers are found in each spindle, and fusimotor innervation is frequently intracapsular. Evidence is presented supporting the hypothesis that successive generations of intrafusal myotubes are formed by the fusion of mononucleated cells. Newly formed myotubes are preferentially distributed in close relationship to the sensory-innervated region of the primary intrafusal myotube. Analyses of growth parameters indicate that the difference in length and diameter between intrafusal and extrafusal fibers is principally a postnatal phenomenon.  相似文献   

5.
Kim HY  Coté GG  Crain RC 《Plant physiology》1992,99(4):1532-1539
Rhythmic light-sensitive movements of the leaflets of Samanea saman depend upon ion fluxes across the plasma membrane of extensor and flexor cells in opposing regions of the leaf-movement organ (pulvinus). We have isolated protoplasts from the extensor and flexor regions of S. saman pulvini and have examined the effects of brief 30-second exposures to white, blue, or red light on the relative membrane potential using the fluorescent dye, 3,3′-dipropylthiadicarbocyanine iodide. White and blue light induced transient membrane hyperpolarization of both extensor and flexor protoplasts; red light had no effect. Following white or blue light-induced hyperpolarization, the addition of 200 millimolar K+ resulted in a rapid depolarization of extensor, but not of flexor protoplasts. In contrast, addition of K+ following red light or in darkness resulted in a rapid depolarization of flexor, but not of extensor protoplasts. In both flexor and extensor protoplasts, depolarization was completely inhibited by tetraethylammonium, implicating channel-mediated movement of K+ ions. These results suggest that K+ channels are closed in extensor plasma membranes and open in flexor plasma membranes in darkness and that white and blue light, but not red light, close the channels in flexor plasma membranes and open them in extensor plasma membranes. Vanadate treatment inhibited hyperpolarization in response to blue or white light, but did not affect K+ -induced depolarization. This suggests that white or blue light-induced hyperpolarization results from activation of the H+ -ATPase, but this hyperpolarization is not the sole factor controlling the opening of K+ channels.  相似文献   

6.
This paper describes the physiological and pharmacological parameters of the response of mature muscle fibers that develop from myoblasts in vitro to iontophoretically applied acetylcholine (ACh) and the distribution of ACh sensitivity over fibers innervated in vitro by spinal cord cells and uninnervated (control) fibers. Peaks of sensitivity were detected near nerve terminals on functionally innervated fibers, but the “extrasynaptic” chemosensitivity remained high. The distribution of chemosensitivity over uninnervated fibers is not uniform: peaks or “hot spots” were detected over most fibers. Autoradiography of cultures exposed to 125I-α-bungarotoxin is consistent with the uneven distribution detected by iontophoresis. Sensitivity peaks were usually located in the immediate vicinity of obvious muscle nuclei and conversely the membrane near most nuclei was more sensitive than that over other regions along the same cell. The relation between innervation and distribution of ACh sensitivity is discussed.  相似文献   

7.
The identification of parasites in animal coprolites has been an important tool to promote knowledge about parasites infecting different zoological groups in the past. It also helps the understanding of parasites causing zoonoses, which is especially important for animals that were part of the diet of prehistoric human groups. Nevertheless, the study of feline coprolites is still scarce. This study analyzed 30 feline coprolites from southeastern Piauí taken from archeological sites used by human groups in the past. Eggs of Spirometra sp., Toxocara cati, Spirurida, Oxyuroidea Calodium cf. hepaticum, Trichuris cf. muris, Trichuris sp., and other Trichuridae, Oncicola sp., and nematode larvae were found. Some of these findings reflect the consumption of infected prey. The role of felines in the transmission of helminthes causing zoonoses in the region is discussed.  相似文献   

8.
9.
Objective:This paper presents the analyses of the fatigue effect on the cross-talk in mechanomyography (MMG) signals of extensor and flexor forearm muscles during pre- and post-fatigue maximum voluntary isometric contraction (MVIC).Methods:Twenty male participants performed repetitive submaximal (60% MVIC) grip muscle contractions to induce muscle fatigue and the results were analyzed during the pre- and post-fatigue MVIC. MMG signals were recorded on the extensor digitorum (ED), extensor carpi radialis longus (ECRL), flexor digitorum superficialis (FDS) and flexor carpi radialis (FCR) muscles. The cross-correlation coefficient was used to quantify the cross-talk values in forearm muscle pairs (MP1, MP2, MP3, MP4, MP5 and MP6). In addition, the MMG RMS and MMG MPF were calculated to determine force production and muscle fatigue level, respectively.Results:The fatigue effect significantly increased the cross-talk values in forearm muscle pairs except for MP2 and MP6. While the MMG RMS and MMG MPF significantly decreased (p<0.05) based on the examination of the mean differences from pre- and post-fatigue MVIC.Conclusion:The presented results can be used as a reference for further investigation of cross-talk on the fatigue assessment of extensor and flexor muscles’ mechanic.  相似文献   

10.
The metathoracic extensor tibiae muscle of the cricket Teleogryllus oceanicus is innervated by two excitatory axons; one of which leaves the metathoracic ganglion through nerve 5, the other through nerve 3. Axons in nerve 5 frequently regenerate to reinnervate the extensor tibiae if the nerve is sectioned in a late nymphal stage; functional reinnervation is rare if the nerve is sectioned in young adults. The muscle may become reinnervated by several axons regenerating through nerve 5, and individual muscle fibres may receive inputs from two regenerated axons. Axons regrowing through nerve 5 to a partially-denervated extensor tibiae preferentially innervate fibres in the central portion of the muscle, which is the normal innervation field of nerve 5. If the muscle is totally denervated by transection of both nerve 5 and nerve 3b, reinnervation is less specific and fibres throughout the muscle may be reinnervated by axons in either nerve. Reinnervation by regenerating axons is progressive. The proportion of muscles which are functionally reinnervated by regenerated axons increases with survival time as does the proportion of fibres within a muscle with reinnervation. The amplitude of excitatory junctional potentials and of muscle contraction evoked by regenerated axons both increase with survival time.  相似文献   

11.
Following tetanic afferent stimulation of a monosynaptic reflex pathway, the transmission through that pathway of isolated reflex volleys is enhanced for some minutes. Post-tetanic potentiation is comparable in the monosynaptic reflex arcs of flexor and extensor muscles. The facilitator and inhibitor actions of monosynaptic reflex afferent fibers, as well as the transmitter action, are potentiated following tetanization. Little post-tetanic change attends reflex transmission through plurisynaptic reflex arcs. Various tests for excitability change made independently of the tetanized afferent fibers reveal none or a slight depression. Hence the potentiating influence of a tetanus is limited to subsequent action on the part of the recently tetanized fibers themselves. Increase in the size of the individual impulses comprising an afferent volley such as might occur during positive after-potential, would accommodate the requirement for a limited process and provide for increased synaptic action. The proposed association between post-tetanic potentiation and positive after-potential (i.e. hyperpolarization) is supported by the following lines of evidence:- 1. Changes in intensity and duration of potentiation with change in frequency and duration of tetanic stimulation are characteristic of, and parallel to, the changes of positive after-potential in similar circumstances. 2. Afferent impulses are increased following a tetanus, and in a fashion that parallels the course of monosynaptic reflex potentiation. Post-tetanic potentiation, as here described, and after-discharge, whatever may be its mechanism, are unrelated phenomena.  相似文献   

12.
The aim of this study was to calculate the theoretical variation of the nonlinear damping factor (B) as a function of the muscle shortening velocity, and then to compare the theoretical values with the experimental data obtained on both the elbow flexor and the ankle extensor muscles. The theoretical variation of the B factor was determined from a muscle model consisting of a contractile component in parallel with a viscous damper both in series with an elastic component, and by using, the charateristic equation of the force velocity curve. In this muscle model, the viscous element modelled the inability of the muscle to generate as big a contracting force (while shortening) as possible under isometric conditions. Eight volunteer subjects performed maximal concentric elbow flexions and ankle extensions on an isokinetic ergometer at angular velocities of 60, 120, 180, 240, 300 and 360°·s–1, and held two maximal isometric actions at an elbow angle of 90° (0° corresponds to the full extension) and at an ankle angle of 0° (0° corresponds to the foot flexion of 90° relative to the leg axis). From these measurements, the force and the shortening velocity values of each muscle were determined by using a musculo-skeletal model of the joint. The results showed that the theoretical behaviour of the B factor would seem to be dependent on the shortening velocity and on the parameter which varies according to the muscle fibre type composition and affects the curvature of the force-velocity curve (af). For each muscle group, the experimental data of B fitted with the theoretical equation, and the best fit was obtained for an of of 0.28 for the ankle extensor and of 0.32 for the elbow flexor muscles. These results indicated that from the muscle model used in the present study it is possible to describe the mechanical behaviour of the muscle during maximal concentric action.  相似文献   

13.
1. The influence of electrical stimulation of the nucleus raphes magnus (RM) on spinal segmental systems were examined. 2. RM stimulation produced an initial increase and a subsequent suppression of the amplitude of both fiextor and extensor lumbar monosynaptic reflex potentials (MSRs). 3. Intracellular recordings were made from alpha-motoneurons of the common peroneal nerve (flexor) and the tibial nerve (extensor). RM stimulation evoked postsynaptic potentials with a time course similar to that of MSR facilitation. 4. RM stimulation inhibited the aggregate excitatory synaptic potential (EPSP) evoked by stimulation of group I afferent fibers without apparent changes in the motoneuronal membrane potential. 5. These data suggest that the RM-evoked biphasic effect on MSR consists of early facilitation due to EPSP, and late inhibition possibly due to presynaptic inhibition of group I afferent fibers.  相似文献   

14.
The present study investigated the influence of additional loads on the knee net joint moment, flexor and extensor muscle group moments, and cocontraction index during a closed chain exercise. Loads of 8, 28, or 48 kg (i.e., respectively, 11.1 ± 1.5%, 38.8 ± 5.3%, and 66.4 ± 9.0% of body mass) were added to subjects during dynamic half squats. The flexor and extensor muscular moments and the amount of cocontraction were estimated at the knee joint using an EMG-and-optimization model that includes kinematics, ground reaction, and EMG measurements as inputs. In general, our results showed a significant influence of the Load factor on the net knee joint moment, the extensor muscular moment, and the flexor muscle group moment (all Anova p < .05). Hence we confirmed an increase in muscle moments with increasing load and moreover, we also showed an original “more than proportional” evolution of the flexor and extensor muscle group moments relative to the knee net joint moment. An influence of the Phase (i.e., descent vs. ascent) factor was also seen, revealing different activation strategies from the central nervous system depending on the mode of contraction of the agonist muscle group. The results of the present work could find applications in clinical fields, especially for rehabilitation protocols.  相似文献   

15.
To elucidate neural mechanisms underlying walking and jumping in insects, motor neurons supplying femoral muscles have been identified mainly in locusts and katydids, but not in crickets. In this study, the motor innervation patterns of the metathoracic flexor and extensor tibiae muscles in the cricket, Gryllus bimaculatus were investigated by differential back-fills and nerve recordings. Whereas the extensor tibiae muscle has an innervation pattern similar to that of other orthopterans, the flexor has an innervation unique to this species. The main body of the flexor muscle is divided into the proximal, middle and distal regions, which receive morphologically unique terminations from almost non-overlapping sets of motor neurons. The proximal region is innervated by about 12 moderate-sized excitatory motor neurons and two inhibitory neurons while the middle and distal regions are innervated by three and four large excitatory motor neurons, respectively. The most-distally located accessory flexor muscle, inserting on a common flexor apodeme with the main muscle, is innervated by at least four small excitatory (slow-type) and two common inhibitory motor neurons. The two excitatory and two inhibitory motor neurons that innervate the accessory flexor muscle also innervate the proximal bundles of the main flexor muscle. This suggests that the most proximal and distal parts of the flexor muscle participate synergistically in fine motor control while the rest participates in powerful drive of tibial flexion movement.  相似文献   

16.
Experiments on cats anesthetized with chloralose showed that repetitive stimulation of the locus coeruleus is accompanied by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons. The effect appeared 600 msec after the beginning of stimulation and reached its maximum after 1500–2000 msec. Repetitive stimulation of the locus coeruleus did not change the membrane potential and did not affect EPSPs or IPSPs evoked by stimulation of low-threshold muscle afferents; EPSPs due to activation of high-threshold cutaneous and muscle afferents likewise remained unchanged. Repetitive stimulation of more central regions of the brain stem was accompanied not only by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons, but also by a decrease in amplitude of EPSPs arising in response to stimulation of these same afferents in flexor motoneurons. These effects were not connected with activation of monoaminergic structures, for unlike effects arising during stimulation of the locus coeruleus, they were also found in previously reserpinized animals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 51–59, January–February, 1982.  相似文献   

17.
Leaflet movements in Samanea saman are driven by the shrinking and swelling of cells in opposing (extensor and flexor) regions of the motor organ (pulvinus). Changes in cell volume, in turn, depend upon large changes in motor cell content of K+, Cl and other ions. We performed patch-clamp experiments on extensor and flexor protoplasts, to determine whether their plasma membranes contain channels capable of carrying the large K+ currents that flow during leaflet movement. Recordings in the “whole-cell” mode reveal depolarization-activated K+ currents in extensor and flexor cells that increase slowly (t½ = ca. 2 seconds) and remain active for minutes. Recordings from excised patches reveal a single channel conductance of ca. 20 picosiemens in both cell types. The magnitude of the K+ currents is adequate to account quantitatively for K+ loss, previously measured in vivo during cell shrinkage. The K+ channel blockers tetraethylammonium (5 millimolar) or quinine (1 millimolar) blocked channel opening and decreased light- and dark-promoted movements of excised leaflets. These results provide evidence for the role of potassium channels in leaflet movement.  相似文献   

18.
Gorton HL 《Plant physiology》1987,83(4):951-955
Pulvinar motor tissues of Samanea saman are often excised for in vitro studies of ion transport. Because ion transport may be regulated in part by hydrostatic pressure (P), this study explores how P and water potential (Ψ) change when motor tissues are excised. Water potential (Ψ) of excised extensor and flexor tissues was measured by the Chardakov method and compared with Ψ measurements made on extensor and flexor tissues of intact pulvini (HL Gorton 1987 Plant Physiol 83: 945-950). Ψ values for excised extensor and flexor tissues were always substantially more negative than for the same tissues in intact pulvini. Extensor tissues excised from open pulvini had slightly more negative Ψ than excised flexor tissues, and the opposite was true for closed pulvini. Extensor and flexor tissues elongate immediately when excised from open or closed pulvini, suggesting that in intact pulvini they are constrained from elongating by the nonextensible vascular core. In addition, both tissues in both open and closed pulvini are under compression imposed by oppositely positioned motor tissue. Excision relieves constraint and compression, decreasing P, and thus decreasing Ψ. This finding may explain, at least in part, the difference between Ψ measurements on intact and excised motor tissues. Implications of these data for the planning and interpretation of in vitro experiments requiring excised strips of extensor and flexor tissues are discussed.  相似文献   

19.
1. Mechanoreceptors monitoring tension in working muscles are described in the Decapoda Crustacea.

2. The receptors are associated with apodemes of muscles in the walking leg and are well‐developed in the extensor and flexor of the meropodite (Figures 1, 2).

3. The unbranched dendrites of the receptor neurones innervate the tissues surrounding the insertions of the muscle fibres (Figures 3, 4, 5(A)).

4. The receptors show spontaneous activity with the M‐C joint at resting position and this activity increases when the muscle is stretched by holding the joint at a different position (Figure 7).

5. Isometric tension increase in the muscle recruits sensory units (Figures 8, 10(A)) and increases the activity of units firing (Figure 9).

6. Apodeme receptors may be an entirely distinct input channel from chordotonal organs (Figure 10(B,C)). Joint movements produced by a standard muscle stimulus against increasing loads reveal very different responses (Figure 11).

7. Attempts to determine whether chordotonal organs (CP1, Figures 5(B), 6) monitor isometric muscle tension (Figure 12) suggest possible complexities in their dynamic responses.

8. Abbreviations used in this paper are FASN flexor apodeme sensory nerve, EASN extensor apodeme sensory nerve, BASN bender apodeme sensory nerve, and OASN opener apodeme sensory nerve.  相似文献   

20.
Conventional pork production, based on highly selected breeds for growth efficiency and carcass leanness, is generally considered to decrease pork quality. In contrast, non-selected breeds produced in extensive systems are associated with high pork quality, which is generally attributed to higher intramuscular fat (IMF) content and less glycolytic muscle metabolism. The present study aimed to determine biochemical, histological and quality traits of loin and ham muscles of pigs from selected Large White (LW) and local French, non-selected Basque (B) breeds. Pigs were reared in a conventional indoor (C, slatted floor), alternative (A, indoor bedding and outdoor area) or extensive system (E, free range, B pigs only). A total of 100 castrated males were produced in 2 replicates, each containing 5 groups of 10 pigs based on breed and system: LWC, LWA, BC, BA and BE. The glycolytic longissimus muscle (LM) and semimembranosus muscle (SM), and the deep red (RSTM) and superficial white (WSTM) portions of semitendinosus muscle (STM) were studied at 145 kg BW. Overall, breed induced stronger effects on muscle traits than the rearing system, among which the E system induced greater changes. The lower muscle growth of B pigs was associated with fewer muscle fibers and a smaller cross-sectional area (CSA) of glycolytic fibers (P < 0.01). The SM was less glycolytic and more oxidative in B than in LW pigs (P < 0.001). The WSTM followed a similar trend, with a larger relative area of type I fibers in B pigs. In contrast, the LM and RSTM were more oxidative in LW pigs. B pigs had higher IMF content and ultimate pH in all muscles, along with lower glycolytic potential, less light and redder meat in the LM and SM (P < 0.001). Compared to the C system, the A system induced only a shift towards a more oxidative metabolism in the LM and a smaller fiber CSA in the RSTM of LW pigs (P < 0.05), without influencing pork quality traits. Compared to BC pigs, BE pigs had a more oxidative and less glycolytic muscle metabolism, along with higher ultimate pH, lower lightness and redder meat (P < 0.01), but similar IMF content. Overall, results indicate that influences of breed and rearing system on muscle properties depend on muscle type, and that IMF content and fiber-type composition are unrelated traits that can be modified independently by genetic or rearing factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号