首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The survival of insects that inhabit Canadian arctic regions depends on a number of factors which have important ecological, behavioral, physiological, and biochemical components. The ability to withstand low winter temperatures is one of the most conspicuous adaptations of northern insects and the one most closely studied in the laboratory. Most species studied so far conform to one or other of the two major overwintering strategies, namely, frost susceptibility, the ability to avoid freezing by supercooling to a considerable degree, or frost tolerance, the survival of actual ice formation within the body. The Arctic beetle, Pytho americanus Kirby, is frost tolerant in both larval and adult stages, a situation which would be congruous with its northern distribution and allow it to spread its life cycle over a number of growing seasons. The main biochemical correlates during the cold-hardening process in this species are increasing glycerol and decreasing glycogen concentrations. In addition to its normally assumed roles in cryoprotection there is evidence to suggest that glycerol may further serve to minimize dehydration in the overwintering insect by increasing the level of bound water. P. americanus larvae and adults have narrow supercooling ranges and maintain their supercooling points in the region of ?4 to ?8 °C. It is hypothesized that these elevated supercooling points are a result of the presence in the hemolymph of nucleating agents which ensure ice formation at high subzero temperatures.Low temperature tolerance strategies of some other arctic and alpine species have been examined and compared with those of relatives from more southerly latitudes. P. americanus has been collected in the Canadian Rockies at elevations of over 6000′, and its frost-tolerant attributes are identical to those of the population collected in the Arctic. A closely related species, P. deplanatus, from the Rockies, however, although it too exhibits frost tolerance in the larval stage, differs markedly from P. americanus in its ability to depress its supercooling range to ?54 °C. It appears that P. deplanatus does not have the ability to synthesize ice-nucleating agents and, therefore, can overwinter in a supercooled condition. Two congeneric species of willow leaf gall sawflies (Pontania spp.), one from Tuktoyaktuk, N.W.T., and the other from southern Vancouver Island have also been compared and contrasted. Pontania sp. on Salix glauca (Tuk., ca. 70 °N) is frost tolerant in its larval stage, has relatively high supercooling points (ca. ?9.0 °C), but does not accumulate glycerol. Pontania sp. from Salix lasiandra (Victoria, ca. 48 °N) has almost identical overwintering properties, indicating the close phylogenetic affinities of cold tolerance in this genus rather than independent adaptation to widely different climatic conditions. Some of the lowest supercooling points ever recorded are from willow stem gall forming insects. Rhabdophaga sp. (Cecidomyiidae) forms potato galls on the stems of Salix lanata in the Inuvik area, N.W.T. After low temperature acclimation, supercooling points down to ?66 °C have been recorded from individual larvae. This is a record, and it indicates that we may be dealing with a system in which most water is in a metabolically bound state. Glycerol levels reach 20% of the fresh body weight during this period. Diastrophus kincaidii Cynipidae) forms stem galls on Thimble Berry (Rubus parviflorus) on southern Vancouver Island. Both of the forementioned species overwinter as larvae in their galls and are, therefore, exposed to ambient air temperatures. A more benign winter climate on Vancouver Island is reflected in the fact that D. kincaidii has supercooling points only in the ?30 to ?33 °C range at the peak of low temperature acclimation, and glycerol levels just below 4% of fresh body weight. Both species are frost susceptible and depend on their supercooling abilities to survive low winter temperatures.  相似文献   

2.
The cold tolerance mechanism of the Antarctic terrestrial mite Alaskozetes antarcticus (Michael) was investigated in cultured animals. Freezing is fatal in this species and winter survival occurs by means of supercooling, which is enhanced by the presence of glycerol in the body. There is an inverse, linear relationship between the concentration of glycerol and the supercooling point, which may be as low as ?30°C. Feeding detracts from supercooling ability by providing ice nucleators in the gut which initiate freezing at relatively high sub-zero temperatures. Experiments on the effects of various environmental factors showed that low temperature acclimation gave rise to increased glycerol concentrations and suppressed feeding, while desiccation also stimulated glycerol production. Photoperiod had no effect on cold tolerance in this species. The juvenile instars of A. antarcticus were found to possess a greater degree of low temperature tolerance than adults.  相似文献   

3.
Ice nucleation and antinucleation in nature   总被引:6,自引:0,他引:6  
Plants and ectothermic animals use a variety of substances and mechanisms to survive exposure to subfreezing temperatures. Proteinaceous ice nucleators trigger freezing at high subzero temperatures, either to provide cold protection from released heat of fusion or to establish a protective extracellular freezing in freeze-tolerant species. Freeze-avoiding species increase their supercooling potential by removing ice nucleators and accumulating polyols. Terrestrial invertebrates and polar marine fish stabilize their supercooled state by means of noncolligatively acting antifreeze proteins. Some organisms also depress their body fluid melting point to ambient temperature by evaporation and/or solute accumulation.  相似文献   

4.
 The supercooling capacity of nine laboratory- held species of ticks originating from different geographical areas, as well as five field-collected species from Germany, was investigated. All but one tick species showed mean supercooling points between about −17 and −23 °C, suggesting that the capacity to supercool to temperatures of ≤−17 °C might be an inherent property of many tick species unrelated to their geographic origin. Photoperiod did not influence the mean supercooling point in any of the species and there was also no distinct seasonal pattern of supercooling in seasonally acclimatized Dermacentor marginatus. Thus, the supercooling ability was independent of the presence/absence of diapause. The finding of thermal hysteresis in D. marginatus hemolymph raises the question of whether or not anti-freeze proteins are involved in the supercooling capacity of that species. An interspecies comparison revealed a weak negative correlation between relative water content and supercooling point of the ticks and an even weaker correlation between body mass or body water mass and the supercooling point. Since the ticks exhibited low supercooling points both before and shortly after feeding, the blood used as food should lack potent ice nucleators. Accepted: 14 June 1996  相似文献   

5.
  • 1.1. The ability to tolerate extracellular freezing as an adaptation for winter survival was tested in seven species of terrestrially-hibernating amphibians found in eastern Canada.
  • 2.2. All species had only moderate supercooling abilities, with whole animal supercooling points of −1.5 to −3°C.
  • 3.3. Two salamander species, Plethodon cinereus and Ambystoma laterale, and the toad, Bufo americamts, were freezing intolerant and were killed when frozen for 24 hr at temperatures just below their supercooling points. The major winter strategy of these animals appears to be behavioural avoidance of subzero temperatures.
  • 4.4. Four species of frogs Rana sylvatica, Hyla versicolor, Hyla crucifer and Pseudacris triseriata, survived extracellular freezing at moderate subzero temperatures (−2 to −4°C) for periods of time ranging up to 2 weeks.
  • 5.5. All four frog species accumulated low molecular weight carbohydrates as cryoprotectants, glycerol being the major cryoprotectant in adult H. versicolor, while immature adults of this species as well as the other three species all produced high levels of glucose as the cryoprotectant.
  相似文献   

6.
COLD TOLERANCE OF MICROARTHROPODS   总被引:7,自引:0,他引:7  
1. Microarthropods (Acari and Collembola) are dominant components of the terrestrial fauna in the Antarctic. Their cold tolerance, which forms the mainspring of their adaptational strategy, is reviewed against a background of their structure and function, and by comparison with other arthropods. 2. Two species, the isotomid collembolan Cryptopygus antarcticus Willem and the oribatid mite Alaskozetes antarcticus (Michael), are examined in detail, and afford a comparative approach to the mechanisms underlying cold tolerance in insect and arachnid types. 3. All microarthropods appear to be freezing-susceptible (unable to tolerate tissue ice), and they utilize varying levels of supercooling to avoid freezing. Gut contents are considered to be the prime nucleation site in most arthropods when supercooled, particularly for Antarctic species. Moulting also increases individual supercooling ability especially in Collembola, and the activity of ice-nucleating bacteria in cold-hardy arthropods may be important. 4. Sources of ice nucleators are many and varied, originating externally (motes) or internally (ice-nucleating agents). They act either extracellularly (mainly in the haemolymph) to promote freezing in ice-tolerant life stages, or intracellularly in freezing-susceptible forms. Thermal hysteresis proteins, acting colligatively, occur in many arthropods including Collembola; they depress both the freezing point of body fluids and the whole-body supercooling point of freezing- susceptible and freezing-tolerant species. 5. Bimodal supercooling point distributions are a feature of microarthropods and water droplets. Samples of field populations of Antarctic mites and springtails show significant seasonal changes in these distributions, which in some respects are analogous to purely physical systems of water droplets. Supercooling points are confirmed as accurate measures of cold-hardiness and survival for Antarctic species, but not necessarily for other arthropods. The effects of constant sub-zero temperatures approaching the limit of the supercooling ability of arthropods require study. 6. Desiccation and dehydration influence microarthropod physiology in several ways; in Alaskozetes it triggers glycerol synthesis. Glycerol may aid binding of water in severely dehydrated insects, but the relationship of such ‘bound’ water to cold-hardiness is unclear. 7. Sugar alcohols (polyols) and sugars are accumulated as potential cryoprotectants in many arthropods at low temperatures, and antifreeze systems may be single or multi-component in structure. Cryoprotectant synthesis and regulation have been studied principally in insects, and fresh weight concentrations of 0–3-5 M of polyols have been found. Trehalose accumulation may also influence cold-hardiness. 8. Microarthropods fall within the spectrum of cold tolerance observed for arthropods and other invertebrates. No special adaptations are found in Antarctic species, and similar strategies and mechanisms are present in both insects and arachnids. The colonization and maintenance of microarthropod populations of polar land habitats seem not to have required the evolution of any novel features with respect to cold tolerance.  相似文献   

7.
Hatchlings of the North American painted turtle (Family Emydidae: Chrysemys picta) typically spend their first winter of life inside a shallow, subterranean hibernaculum (the natal nest) where life-threatening conditions of ice and cold commonly occur. Although a popular opinion holds that neonates exploit a tolerance for freezing to survive the rigors of winter, hatchlings are more likely to withstand exposure to ice and cold by avoiding freezing altogether-and to do so without the benefit of an antifreeze. In the interval between hatching by turtles in late summer and the onset of wintery weather in November or December, the integument of the animals becomes highly resistant to the penetration of ice into body compartments from surrounding soil, and the turtles also purge their bodies of catalysts for the formation of ice. These two adjustments, taken together, enable the animals to supercool to temperatures below those that they routinely experience in nature. However, cardiac function in hatchlings is diminished at subzero temperatures, thereby compromising the delivery of oxygen to peripheral tissues and eliciting an increase in reliance by those tissues on anaerobic metabolism for the provision of ATP. The resulting increase in production of lactic acid may disrupt acid/base balance and lead to death even in animals that remain unfrozen. Although an ability to undergo supercooling may be key to survival by overwintering turtles in northerly populations, a similar capacity to resist inoculation and undergo supercooling characterizes animals from a population near the southern limit of distribution, where winters are relatively benign. Thus, the suite of characters enabling hatchlings to withstand exposure to ice and cold may have been acquired prior to the northward dispersal of the species at the end of the Pleistocene, and the characters may not have originated as adaptations specifically to the challenges of winter.  相似文献   

8.
Summary The ability of adults and larvae of two species of perimylopid beetles (Hydromedion sparsutum, Perimylops antarcticus) to survive sub-zero temperatures was studied at Husvik, South Georgia in summer during October–December 1990. Experiments determined their survival at constant sub-zero temperatures, their lower lethal temperatures and individual supercooling points. The effects of cooling rates (0.015°, 0.5° and 2.0°C min–1) and starvation on survival were also assessed. Mean supercooling points of field-collected individuals of both species were in the range -3.0° to -5.4°C with Perimylops having a deeper capacity (ca. 1.5°C) for supercooling relative to Hydromedion. The former species also survived freezing temperatures significantly better than the latter and its mean lower lethal temperature was 2.5°C lower. At a constant temperature of -8.5°C, the median survival times for Perimylops adults and larvae were 19 and 26 h respectively, whilst both stages of Hydromedion died within 3 h. The three cooling rates resulted in significantly different median survival temperatures for adult Hydromedion with 0.5°C min–1 producing maximum survival. Prior starvation did not have a significant influence on the survival of either species at sub-zero temperatures although both adults survived less well. The results support field observations on the habitats and distribution of these insects, and suggest differing degrees of freezing tolerance.  相似文献   

9.
Abstract.The alpine tree weta Hemidiena maori Pictet et Saussure (Orthoptera: Stenopelmatidae) is a large, flightless insect found above the treeline on many of the mountain ranges of the South Island of New Zealand. The population found on the Rock and Pillar Range, Central Otago has been identified as freezing tolerant with a haemolymph ice nucleating agent. The ability of H. maori to survive freezing is compared to the lowland weta Hemideina thoracica Walker and H. crassidens Blanchard, both of which are able to survive the formation of some ice in their bodies. Mortality is associated with time spent frozen in H. thoracica , and it is hypothesized that this species is killed when a critical proportion of its body water is frozen. All five subalpine and alpine populations of H. maori surveyed were found to be freezing tolerant.
Comparison of temperatures of first nucleation and mean supercooling point of haemolymph droplets suggest that haemolymph ice nucleating activity varies between populations of H. maori. Hemideina maori collected from the Mt Cook region appear to lack a haemolymph ice nucleator. This population is nevertheless freezing tolerant, suggesting that the haemolymph ice nucleating agent described in H. maori is not essential for freezing tolerance. Hemideina crassidens and H. ricta Hutton, both of which are found in lowland habitats, also had high mean supercooling point and temperatures of first nucleation of haemolymph droplets, suggesting that these species also have a haemolymph ice nucleator.
Comparison of ice nucleation characteristics of haemolymph and faecal material (representing gut contents) suggests that gut nucleators in H. maori may be at least as efficient as the haemolymph nucleator. It is concluded that freezing tolerance is probably not an adaptation to the alpine environment. This highlights the need for inter- and intraspecific comparative studies if physiological data are to be used to draw evolutionary conclusions.  相似文献   

10.
1. Freezing was lethal in the eggs, larvae, pupae and adults of the blowflies Calliphora vicina R-D. and Calliphora vomitoria (L.), but varying degrees of supercooling were found. 2. Cold resistance (as determined by their supercooling capacity) was greatest in eggs (to c. -25 degrees C), and moderate in other life stages (range -7 to -13 degrees C), which was evident from the distributions of their supercooling points. 3. Water contents of all life stages varied from 63% to 77% of fresh weight; pupae of C. vomitoria contain the smallest proportion of water. No relationship between the amount of body water and supercooling ability was detected. 4. Glucose was the major compound in all life stages of C. vicina, with a maximum concentration of 8.22 micrograms mg-1 fresh weight in the adults. In addition, five other potential cryoprotectants occurred in concentrations greater than 0.1% of fresh weight. No correlation between solute concentration and supercooling was observed. 5. Both C. vicina and C. vomitoria have sufficient cold hardiness to avoid lethal freezing in sheltered habitats in southern Britain, which may render diapause unnecessary in both species.  相似文献   

11.
Laboratory investigations into the low-temperature tolerance of the green spruce aphid, Elatobium abietinum, revealed that the insect was killed by freezing. Aphids and host Sitka spruce needles showed similar seasonal changes in supercooling ability. A noticeable increase in this ability occurred between June and October. Aphids were more susceptible to low temperatures when attached to the plant. It is suggested that mortality resulted from ice which formed in the sap of the host needles and spread into the feeding aphids via their mouthparts. Neither the chlorotic banding of needles, caused by aphid feeding, nor needle length affected needle supercooling. Increased duration of exposure increased the probability of freezing of supercooled needles at low temperatures. A small percentage of first-instar nymphs supercooled to much lower temperatures than the remainder of the population. These were newly born nymphs whose high supercooling ability markedly decreased when they began to feed.  相似文献   

12.
Insect antifreezes and ice-nucleating agents   总被引:2,自引:0,他引:2  
John G. Duman 《Cryobiology》1982,19(6):613-627
Cold-tolerant, freeze-susceptible insects (those which die if frozen) survive subzero temperatures by proliferating antifreeze solutes which lower the freezing and supercooling points of their body fluids. These antifreezes are of two basic types. Lowmolecular-weight polyhydroxy alcohols and sugars depress the freezing point of water on a colligative basis, although at higher concentrations these solutes may deviate from linearity. Recent studies have shown that these solutes lower the supercooling point of aqueous solutions approximately two times more than they depress the freezing point. Consequently, if a freeze-susceptible insect accumulates sufficient glycerol to lower the freezing point by 5 °C, then the glycerol should depress the insect's supercooling point by 10 °C.Some cold-tolerant, freeze-susceptible insects produce proteins which produce a thermal hysteresis (a difference between the freezing and melting point) of several degrees in the body fluids. These thermal hysteresis proteins (THPs) are similar to the antifreeze proteins and glycoproteins of polar marine teleost fishes. The THPs lower the freezing, and presumably the supercooling, point by a noncolligative mechanism. Consequently, the insect can build up these antifreezes, and thereby gain protection from freezing, without the disruptive increases in osmotic pressure which accompany the accumulation of polyols or sugars. Therefore the THPs can be more easily accumulated and maintained during warm periods in anticipation of subzero temperatures. It is not surprising then that photoperiod, as well as temperature, is a critical environmental cue in the control of THP levels in insects.Some species of freeze-tolerant insects also produce THPs. This appears somewhat odd, since most freeze-tolerant insects produce ice nucleators which function to inhibit supercooling and it is therefore not clear why such an insect would produce antifreeze proteins. It is possible that the THPs have an alternate function in these species. However, it also appears that the THPs function as antifreezes during those periods of the year when these insects are not freeze tolerant (i.e., early autumn and spring) but when subzero temperatures could occur. In addition, at least one freeze-tolerant insect which produces THPs, Dendroides canadensis, typically loses freeze tolerance during midwinter thaws and then regains tolerance. The THPs could be important during those periods when Dendroides loses freeze tolerance by making the insect less susceptible to sudden temperature decreases.Comparatively little is known of the biochemistry of insect THPs. However, comparisons of those few insect THPs which have been purified with the THPs of fishes show some interesting differences. The insect THPs lack the large alanine component commonly found in the fish THPs. In addition, the insect THPs generally contain greater percentages of hydrophilic amino acids than do those of the fish. Perhaps the most interesting insect THPs are those from Tenebrio molitor which have an extremely large cysteine component (28% in one THP). Studies on the primary and higher-order structure of the insect THPs need to be carried out so that more critical comparisons with the fish THPs can be made. This may provide important insights into the mechanisms of freezing point and supercooling point depression exhibited by these molecules. In addition, comparative studies of the freezing and supercooling point depressing activities of the various THPs, in relation to their structures, should prove most interesting.It has become increasingly apparent over the last few years that most freeze-tolerant insects, unlike freeze-susceptible species, inhibit supercooling by accumulating ice-nucleating agents in their hemolymph. These nucleators function to ensure that ice formation occurs in the extracellular fluid at fairly high temperatures, thereby minimizing the possibility of formation of lethal intracellular ice. Little is known of the nature of the insect ice-nucleating agents. Those few which have been studied are heat sensitive and nondialyzable and are inactivated by proteolytic enzymes, thus indicating that they are proteinaceous. Studies on the structure-function relationships of these unique molecules should be done.  相似文献   

13.
The pulmonate snail Chondrina avenacea lives on exposed rock walls where it experiences drastic daily and seasonal fluctuations of abiotic conditions and food availability. We found that tolerance to dry conditions was maintained at a very high level throughout the year and was mainly based on the snails’ ability to promptly enter into estivation (quiescence) whenever they experienced drying out of their environment. Snails rapidly suppressed their metabolism and minimized their water loss using discontinuous gas exchange pattern. The metabolic suppression probably included periods of tissue hypoxia and anaerobism as indicated by accumulation of typical end products of anaerobic metabolism: lactate, alanine and succinate. Though the drought-induced metabolic suppression was sufficient to stimulate moderate increase of supercooling capacity, the seasonally highest levels of supercooling capacity and the highest tolerance to subzero temperatures were tightly linked to hibernation (diapause). Hibernating snails did not survive freezing of their body fluids and instead relied on supercooling strategy which allowed them to survive when air temperatures dropped to as low as ?21 °C. No accumulation of low-molecular weight compounds (potential cryoprotectants) was detected in hibernating snails except for small amounts of the end products of anaerobic metabolism.  相似文献   

14.
The supercooling distribution curves of Myzus persicae varied in response to feeding position, diet and age. Unfed instar I aphids supercooled to temperatures lower than –20 °C. Feeding aphids supercooled to higher temperatures, the earlier instars on subsidiary veins supercooling to lower temperatures than the late instars and adults on the main veins. Starvation decreased supercooling ability in some adult aphids. The supercooling ability of aphids feeding on sucrose solutions through a Parafilm membrane decreased in response to an increasing concentration, the position being reversed on 25% sucrose. Varying the amino acid concentration had no effect. The possible effects of this variable supercooling ability on the winter survival of the aphid are discussed.  相似文献   

15.
Desiccation stress at sub-zero temperatures in polar terrestrial arthropods   总被引:1,自引:0,他引:1  
Cold tolerant polar terrestrial arthropods have evolved a range of survival strategies which enable them to survive the most extreme environmental conditions (cold and drought) they are likely to encounter. Some species are classified as being freeze tolerant but the majority of those found in the Antarctic survive sub-zero temperatures by avoiding freezing by supercooling. For many arthropods, not just polar species, survival of desiccating conditions is equally important to survival of low temperatures. At sub-zero temperatures freeze avoiding arthropods are susceptible to desiccation and may lose water due to a vapour diffusion gradient between their supercooled body fluids and ice in their surroundings. This process ceases once the body fluids are frozen and so is not a problem for freeze tolerant species. This paper compares five polar arthropods, which have evolved different low temperature survival strategies, and the effects of exposure to sub-zero temperatures on their supercooling points (SCP) and water contents. The Antarctic oribatid mite (Alaskozetes antarcticus) reduced its supercooling point temperature from -6 to -30 degrees C, when exposed to decreasing sub-zero temperatures (cooled from 5 to -10 degrees C over 42 days) with little loss of body water during that period. However, Cryptopygus antarcticus, a springtail which occupies similar habitats in the Antarctic, showed a decrease in both water content and supercooling ability when exposed to the same experimental protocol. Both these Antarctic arthropods have evolved a freeze avoiding survival strategy. The Arctic springtail (Onychiurus arcticus), which is also freeze avoiding, dehydrated (from 2.4 to 0.7 g water g(-1) dry weight) at sub-zero temperatures and its SCP was lowered from c. -3 to below -15 degrees C in direct response to temperature (5 to -5.5 degrees C). In contrast, the freeze tolerant larvae of an Arctic fly (Heleomyza borealis) froze at c. -7 degrees C with little change in water content or SCP during further cold exposure and survived frozen to -60 degrees C. The partially freeze tolerant sub-Antarctic beetle Hydromedion sparsutum froze at c. -2 degrees C and is known to survive frozen to -8 degrees C. During the sub-zero temperature treatment, its water content reduced until it froze and then remained constant. The survival strategies of such freeze tolerant and freeze avoiding arthropods are discussed in relation to desiccation at sub-zero temperatures and the evolution of strategies of cold tolerance.  相似文献   

16.
Thermal tolerance, supercooling point, water balance and osmoregulatory ability of Pringleophaga marioni Viette (Lepidoptera: Tineidae) are investigated in this study. Field-fresh larvae had a mean CT(Min) (cold stupor) of -0.6 degrees C and a mean CT(Max) (heat coma) of 38.7 degrees C. The mean supercooling point of field-fresh individuals was -5.0 degrees C. Caterpillars showed 100% survival of freezing to -6.5 degrees C, but at -12 degrees C mortality rose to 100%. Survival of a 30h exposure to -6.0 degrees C was 80%, but declined to 30% in the 6-12h interval at -7.5 degrees C. No caterpillars survived for longer than 12h at -9.0 degrees C. Survival of high temperatures (35 degrees C and above) was poor. Tolerance of water loss (46% of fresh mass) and rates of water loss (1% fresh massh(-1)) were similar to those found in other mesic insects. P. marioni larvae were incapable of metabolizing lipids to replenish lost water and showed no haemolymph osmoregulatory ability. It is suggested that the preponderance of freeze tolerance in high-latitude southern hemisphere species may be associated with their occurrence in moist habitats, and that the "freeze tolerance" category be re-examined in the light of the range of strategies adopted by such arthropods.  相似文献   

17.
Abstract A number of freeze-tolerant insect species contain proteins/lipoproteins or insoluble crystals that are ice nucleating active at relatively high subzero temperatures. Recently ice nucleating active bacteria and fungi have been identified as normal flora in insect guts. However, most insects are unable to survive internal ice formation and the key factor in their overwintering survival is the regulation of the temperature at which they spontaneously freeze. To enhance their supercooling capacity overwintering insects eliminate endogenous ice nucleators, accumulate low molecular weight polyols and sugars, and synthesize hemolymph antifreeze proteins or peptides. The factors affecting the supercooling capacity of overwintering insects or the mechanism of cold-hardiness are discussed.  相似文献   

18.
The supercooling capability of xylem parenchyma cells (XPCs) in boreal hardwood species differs depending not only on species, but also season. In this study, the roles of cell walls and intracellular contents in supercooling capability of XPCs were examined in three boreal hardwood species, Japanese beech, katsura tree and mulberry, whose supercooling capability differs largely depending on species and season. XPCs in these species harvested in winter and summer were treated by rapid freezing and thawing (RFT samples) or by RFT with further washing (RFTW samples) to remove intracellular contents from XPCs in order to examine the roles of cell walls in supercooling. RFT samples were also treated with glucose solution (RFTG samples) to examine roles of intracellular contents in supercooling. The supercooling capabilities of these samples were examined by differential thermal analysis after ultrastructural observation of XPCs by a cryo‐scanning electron microscope to confirm effects of the above treatments. XPCs in RFTW samples showed a large reduction in supercooling capability to similar temperatures regardless of species or season. On the other hand, XPCs in RFTG samples showed a large increase in supercooling capability to similar temperatures regardless of species or season. These results indicate that although cell walls have an important role in maintenance of supercooling, change in supercooling capability of XPCs is induced by change in intracellular contents, but not by change in cell wall properties.  相似文献   

19.
In semi‐aquatic bugs (Heteroptera: Gerromorpha), the strategies of overwintering in a cryothermic state (i.e. at body temperatures below the equilibrium freezing point) remain largely unexplored. The present study provides an analysis of the ecophysiological aspects of overwintering in nine gerromorphan species. All nine species avoid ice formation by means of a more or less extensive supercooling of their body fluids. There is a tight correlation between the supercooling point (SCP) and the lower lethal temperature. Different species use different physiological adjustments to increase the likelihood of survival in a supercooled state. These include stabilization of the supercooled state by active antifreeze factors that cause thermal hysteresis between equilibrium melting and freezing points, the accumulation of low‐molecular weight sugars and polyols with putative cryoprotective functions, or by having a relatively high body fluid osmolality, combined with a low level of hydration. The majority of species under study overwinter only as adults, whereas Velia caprai Tamanini can overwinter either as an adult or in the egg stage. The supercooling capacity of V. caprai adults is insufficient to prevent the risk of lethal freezing. The adults therefore survive only opportunistically in suitable microhabitats, and/or during mild winters. The survival of V. caprai in winter is assured by extensive supercooling and having overwintering eggs that are highly cold tolerant.  相似文献   

20.
Painted turtles (Chrysemys picta) typically spend their first winter of life in a shallow, subterranean hibernaculum (the natal nest) where they seemingly withstand exposure to ice and cold by resisting freezing and becoming supercooled. However, turtles ingest soil and fragments of eggshell as they are hatching from their eggs, and the ingestate usually contains efficient nucleating agents that cause water to freeze at high subzero temperatures. Consequently, neonatal painted turtles have only a modest ability to undergo supercooling in the period immediately after hatching. We studied the limit for supercooling (SCP) in hatchlings that were acclimating to different thermal regimes and then related SCPs of the turtles to the amount of particulate matter in their gastrointestinal (GI) tract. Turtles that were transferred directly from 26 degrees C (the incubation temperature) to 2 degrees C did not purge soil from their gut, and SCPs for these animals remained near -4 degrees C for the 60 days of the study. Animals that were held at 26 degrees C for the duration of the experiment usually cleared soil from their GI tract within 24 days, but SCPs for these turtles were only slightly lower after 60 days than they were at the outset of the experiment. Hatchlings that were acclimating slowly to 2 degrees C cleared soil from their gut within 24 days and realized a modest reduction in their SCP. However, the limit of supercooling in the slowly acclimating animals continued to decline even after all particulate material had been removed from their GI tract, thereby indicating that factors intrinsic to the nucleating agents themselves also may have been involved in the acclimation of hatchlings to low temperature. The lowest SCPs for turtles that were acclimating slowly to 2 degrees C were similar to SCPs recorded in an earlier study of animals taken from natural nests in late autumn, so the current findings affirm the importance of seasonally declining temperatures in preparing animals in the field to withstand conditions that they will encounter during winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号