首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
The stigmatal cells in the branchial basket of ascidians from a number of genera have been examined as to the nature and distribution of their intercellular junctions. The branchial wall consists of ciliated and parietal cells; the ciliated cells are arranged in seven rows and are associated by junctions with other cells in the same row as well as with those in adjacent rows. They are also associated by junctions with peripheral parietal cells. Junctions between adjacent ciliated cells in all cases exhibit tight junctions or zonulae occludentes. However, these cell borders also possess fasciae or zonulae adhaerentes if they are in the same row and the ciliary rootlets insert-into these junctions. If the cells are in adjacent rows they exhibit adhaerentes junctions only in species belonging to the orders Phlebobranchiata and Aplousobranchiata. In contrast, if the cells in adjacent rows belong to the order Stolidobranchiata. they never exhibit any adhaerentes junctions and the ciliary rootlets of the basal bodies from the cilia insert instead into the tight junctions and the non-junctional membrane below them. At the homologous junctional borders between adjacent parietal cells and also at heterologous junctional borders between parietal and ciliated cells, tight junctions alone occur, with no co-existing adhaerentes junctions along their lateral borders. Again, fibrils from ciliary rootlets insert into zonulae occludentes. This shows that tight junctions are capable both of forming permeability barriers, in that they can be seen to prevent the entry of exogenous tracers such as lanthanum, and of acting as adhesive devices.  相似文献   

2.
The spatial arrangement of tight junctions in choroid plexus and ciliary body rabbit epithelia has been determined by studying freeze-fracture complementary replicas. In the choroid plexus epithelium, the interruptions of the junctional P-face fibrils were measured to be 14% of their total length. In the ciliary body epithelium, where the fibrils were found to be more fragmented than in the choroid plexus, the P-face fibril interruptions accounted for 12 % of the total length of the zonulae occludentes sealing the non-pigmented cells and 30% in the focal linear tight junctions connecting the non-pigmented and pigmented cells at their apices. In both epithelia, the interruptions of the ridges are precisely complemented by particles or short bars of similar length found in the E-face furrows. Consequently, it is possible to conclude that the junctional fibrils are continuous in these two epithelia. For the zonulae occludentes, this continuity appears to be inconsistent with the ‘leaky’ properties of these epithelia shown by some physiological investigations.  相似文献   

3.
Application of carbon tetrachloride produced a progressive proliferation of tight junctions in the rat liver. This system proved to be rapid and highly reproducable and affords the opportunity for tracing the fate of tight junctions in freeze-fracture replicas, facilitating investigations on their formation and function. Beginning on day one carbon tetrachloride treatments resulted in the progressive loosening and fragmentation of the junctional meshwork. After three to four days the membrane outside the zonulae occludentes was extensively filled with proliferated discrete junctional elements often forming complex configurations. From the fifth day on the zonulae occludentes were restricted again predominantly around the bile canaliculus margins. But the junctional meshwork of the zonulae occludentes remained loosened in comparison to those in the control rats. It could be shown that tight junction proliferation on the lateral surface of the plasmalemma occurred both through de novo formation from discrete centers of growth by addition of intramembranous particles and through reorganization of preexistent junctional strands of the fragmented zonulae occludentes bodies. Whereas the large gap junctions close associated with the zonulae occludentes remained more or less unaffected during the experiments, small gap junctions increased in number after five days and were located at the margin or in the tight junction domain. It is assumed that the degeneration of the tight junctions served as a pool for intramembranous particles which form the gap junctions. The results of these observations are discussed in relation to those obtained in other systems.  相似文献   

4.
Summary The fine structure of the human and rabbit ciliary body epithelium has been studied with the electron microscope, both under normal conditions and after paracentesis of the anterior chamber. The disposition of the junctional complexes in the two layers of the ciliary epithelium is described in detail. Junctional complexes appear particularly developed between the apical surfaces of the cells of the two layers, but are present, as in other monolayered epithelia, also between the lateral surfaces of adjacent cells of each layer. The junctional complexes connecting the apical surfaces of the cells of the two layers are represented by zonulae occludentes, zonulae adhaerentes and desmosomes following each other irregularly, with interposition of rounded dilatations of the intercellular space called ciliary channels. The zonulae occludentes and adhaerentes found along the lateral surfaces of the epithelial cells probably form discontinuous and overlapping fasciae. Moreover, the existence of a peculiar dove-tail arched junction called macula occludens is suggested. Few differences were encountered when comparing the arrangement of junctional complexes in the ciliary epithelium of man with that of the rabbit. Many desmosomes connecting the basal portion of lateral surfaces of the non-pigmented cells were found only in human ciliary bodies.The study of the modifications of the junctional apparatus of the ciliary epithelium following paracentesis of the anterior chamber, confirms the functional hypotheses on junctional complexes previously suggested: in particular only zonulae occludentes cause a real block of the intercellular spaces. On the basis of the present work, the close relationships between the number, kind and disposition of junctional complexes in epithelia and the functional possibilities of these epithelia are stressed.Dedicated to Professor W. Bargmann on his 60th birthday.Dr. Orzalesi is the recipient of a research grant from Ministero della Pubblica Istruzione for 1964.  相似文献   

5.
Loss and reappearance of gap junctions in regenerating liver   总被引:14,自引:7,他引:7       下载免费PDF全文
Changes in intercellular junctional morphology associated with rat liver regeneration were examined in a freeze-fracture study. After a two-thirds partial hepatectomy, both gap junctions and zonulae occludentes were drastically altered. Between 0 and 20 h after partial hepatectomy, the junctions appeared virtually unchanged. 28 h after partial hepatectomy, however, the large gap junctions usually located close to the bile canaliculi and the small gap junctions enmeshed within the strands of the zonulae occudentes completely disappeared. Although the zonulae occludentes bordering the bile canaliculi apparently remained intact, numerous strands could now be found oriented perpendicular to the canaliculi. In some instances, the membrane outside the canaliculi was extensively filled with isolated junctional strands, often forming very complex configurations. About 40 h after partial hepatectomy, very many small gap junctions reappeared in close association with the zonulae occludentes. Subsequently, gap junctions increased in size and decreased in number until about 48 h after partial hepatectomy when gap junctions were indistinguishable in size and number from those of control animals. The zonulae occludentes were again predominantly located around the canalicular margins. These studies provide further evidence for the growth of gap junctions by the accretion of particles and of small gap junctions to form large maculae.  相似文献   

6.
Gap junctions and zonulae occludentes of hepatocytes were examined in thin sections and freeze-fracture replicas from livers of larval and juvenile adult lampreys and during the phase of metamorphosis when bile ducts and bile canaliculi disappear (biliary atresia). Larvae possess zonulae occludentes at the canaliculi which are composed of one to five (mean = 2.81) junctional strands that provide a bile-blood barrier. Morphometry demonstrates that during biliary atresia the decreases in number of junctional strands and apico-basal depth of the zonulae occludentes are accompanied by an increase in the frequency of gaps or interruptions in the strands and in a breakdown of the bile-blood barrier. The zonulae occludentes completely disappear during metamorphosis and are not found in the adult liver. Gap junctions of the larval liver occupy 1% of the surface of the plasma membrane and have a mean area of 0.167 micron 2 but, following an initial decline in these parameters during early biliary atresia, they rise sharply in later stages of metamorphosis and in adults are 3.2% and 0.502 micron 2, respectively. The events of alteration in junctional morphology during lamprey biliary atresia is in many ways comparable to the changes in gap junctions and zonulae occludentes during experimental and pathological intra- and extrahepatic cholestasis in mammals.  相似文献   

7.
Summary The zonulae occludentes of the dome epithelia and adjacent non-dome epithelia in four locations of the gut-associated lymphoid tissue (GALT) in the rabbit ileum and caecum (Peyer's patches, sacculus rotundus, caecal lymphoid patches, appendix) were studied in freeze-fracture replicas. In all locations the zonulae occludentes of the dome epithelium are composed of more junctional strands than in the corresponding non-dome epithelium. In the dome epithelia of Peyer's and caecal lymphoid patches the zonulae occludentes show considerable structural variation; the number of superimposed strands is 10 (range 5–18). In the dome epithelia of sacculus rotundus and appendix, in addition to zonulae occludentes, extended networks of junctional strands (fasciae occludentes) are present particularly between M-cells and enterocytes. The zonulae occludentes consist of 8 to 9 (range 5–15) superimposed strands; the fasciae occludentes extend up to a depth of 20m on the lateral membranes. The presence of the fasciae occludentes correlates with the appearance of regularly shaped clusters of lymphocytes, which are most developed in the dome epithelia of sacculus rotundus and appendix. These results suggest (1) that in contrast to the dome epithelia of Peyer's and caecal lymphoid patches those of sacculus rotundus and appendix are compartmentalized, and (2) that the mobility of lymphocytes and diffusion of antigens in the dome epithelia of sacculus rotundus and appendix is restricted.  相似文献   

8.
Summary Ependymal cells and their junctional complexes in the area postrema of the rat were studied in detail by tracer experiments using horseradish peroxidase (HRP) and colloidal lanthanum and by freeze-etch techniques, in addition to routine electron microscopy. The ependyma of the area postrema is characterized as flattened cells possessing very few cilia, a moderate amount of microvilli, a well-developed Golgi apparatus and rough endoplasmic reticulum. Numerous vesicles or tubular formations with internal dense content were found to accumulate in the basal processes of ependymal cells; the basal process makes contact with the perivascular basal lamina. It is suggested that the dense material in the tubulovesicular formations is synthesized within the ependymal cell and discharged into the perivascular space. The apical junctions between adjacent ependymal cells display very close apposition, with a gap of 2–3 nm, but no fusion of adjacent plasma membranes; they thus represent a transitional form between the zonulae adhaerentes present in the ordinary mural ependyma and the zonulae occludentes in the choroidal epithelium. A direct intercommunication between the ventricular cerebrospinal fluid (CSF) and the blood vascular system indicates that a region exists lacking a blood-ventricular CSF barrier.  相似文献   

9.
Summary Zonulae occludentes, gap junctions and desmosomes have been demonstrated in replicas of freeze-fractured follicular cells of normal human and rabbit thyroid glands. The zonulae occludentes between the human follicular cells are composed of two to eight strands, which completely separate the intercellular space from the follicular lumen. Four to twelve or more strands are visible between the follicular cells of the rabbit thyroid gland.In the meshes of the zonulae occludentes as well as below them, gap junctions are present. They are numerous on the fracture faces of the human follicular cell membranes, but infrequent in those of the rabbit.Aggregates of particles related to desmosomes are found in the deeper meshes of the zonulae occludentes or close to them.  相似文献   

10.
Interendothelial membrane contacts in different segments of brain blood vessels were investigated by the freeze-etching technique. The study demonstrated that the endothelial cells of the pre- and postcapillary segments were coupled by elaborate zonulae occludentes. These tight junction formations encompassed gap junctions of different sizes and distribution. The globules of the pre- and postcapillary tight junctions revealed a great fragility which led to an atypical distribution of the sealing elements. In the "typical" brain capillaries the endothelial cells were connected by continuous tight junctions. In contrast to the structural continuity of these formations the fenestrated segments of capillaries in the choroid plexus and area postrema demonstrated discontinuous fasciae occludentes. They were composed of rows of individual particles which should be regarded primarily as focal in nature.  相似文献   

11.
Summary The intercellular connections between the epithelial cells of Bowman's capsule were investigated. It could be demonstrated that typical zonulae occludentes (tight junctions) are present in the species (rat, hamster, and Tupaia) studied. Freeze-fracturing shows a network of anastomizing strands; some species variations are described. In the rat two strands are common. In the golden hamster mostly two to four and occasionally five strands occur. In Tupaia regularly three tight junction strands are found and also gap junctions associated with the zonulae occludentes. In thin sections the goniometric analysis confirms the freeze-fracturing results and reveals attachment zones of macular shape, which are classified as intermediate junctions and desmosomes. The functional role of these cell junctions observed in the epithelium of Bowman's capsule is discussed.  相似文献   

12.
Tissues from the epidermis, alimentary tract and notochord of the cephalochordate Branchiostoma lanceolatum have been examined in both thin sections and freeze-fracture replicas to ascertain the nature of the intercellular junctions that characterize their cell borders. The columnar epithelial cells from the branchial chamber (pharynx), as well as from the anterior and posterior intestine, all feature cilia and microvilli on their luminal surfaces. However, their lateral surfaces exhibit zonulae adhaerentes only. No gap junctions have been observed, nor any tight junctions (as are a feature of the gut of urochordates and higher vertebrates), nor unequivocal septate junctions (as are typical of the gut of invertebrates). The basal intercellular borders are likewise held together by zonulae adhaerentes while hemidesmosomes occur along the basal surface where the cells abut against the basal lamina. The lateral cell surfaces, where the adhesive junctions occur, at both luminal and basal borders, do not exhibit any specialized arrangement of intramembrane particles (IMPs), as visualized by freeze-fracture. The IMPs are scattered at random over the cell membranes, being particularly prevalent on the P-face. The only distinctive IMPs arrays are those found on the ciliary shafts in the form of ciliary necklaces and IMP clusters. With regard to these ciliary modifications, cephalochordates closely resemble the cells of the branchial tract of ascidians (urochordates). However, the absence of distinct junctions other than zonulae adhaerentes makes them exceptions to the situation generally encountered in both vertebrates and urochordates, as well as in the invertebrates. Infiltration with tracers such as lanthanum corroborates this finding; the lanthanum fills the extracellular spaces between the cells of the intestine since there are no junctions present to restrict its entry or to act even as a partial barrier. Junctions are likewise absent from the membranes of the notochord; the membranes of its lamellae and vesicles exhibit irregular clusters of IMPs which may be related to the association between the membranes and the notochordal filaments. Epidermis and glial cells from the nervous system possess extensive desmosomal-like associations or zonulae adhaerentes, but no other junctional type is obvious in thin sections, apart from very occasional cross-striations deemed by some previous investigators to represent 'poorly developed' septate junctions.  相似文献   

13.
Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia   总被引:56,自引:36,他引:20       下载免费PDF全文
Epithelia vary with respect to transepithelial permeability. In those that are considered "leaky", a large fraction of the passive transepithelial flux appears to follow the paracellular route, passing across the zonulae occludentes and moving down the intercellular clefts. In "tight" epithelia, the resistance of the paracellular pathway to passive flux is greatly increased. To see whether differences in the morphology of the zonula occludens could contribute to this variability in leakiness among epithelia, replicas of zonulae occludentes in freeze-fractured material from a variety of tight and leaky epithelia were examined. The junctions appear as a branching and anastomosing network of strands or grooves on the A and B membrane fracture faces, respectively. It was found that the zonula occludens from a "very leaky" epithelium, the proximal convoluted tubule of the mouse kidney, is extremely shallow in the apical-basal direction, consisting in most places of only one junctional strand. In contrast, the "very tight" frog urinary bladder exhibits a zonula occludens that is relatively deep (>0.5 µm) in the apical-basal direction, and consists of five or more interconnected junctional strands interposed between luminal and lateral membrane surfaces. Epithelia of intermediate permeabilities exhibited junctions with intermediate or variable morphology. Toad urinary bladder, mouse stomach, jejunum, and distal tubule, rabbit gallbladder, and Necturus kidney and gallbladder were also examined, and the morphological data from these epithelia were compared to physiological data from the literature.  相似文献   

14.
Thin sections and freeze-fracture replicas of the water-blood barrier in the gill lamellae of adult lampreys (Geotria australis, Lampetra fluviatilis) demonstrate that the occluding junctions between epithelial pavement cells differ markedly from those between endothelial pillar cells in the structure and arrangement of their strands. The zonulae occludentes between pavement cells typically consist of complex networks of 4–6 strands, the mean number of which undergoes a small but significant decline when the animal is acclimated to seawater. In comparison, the occluding junctions between pillar cells are less elaborate and may represent maculae or fasciae, rather than zonulae occludentes. They do not apparently undergo a change when the animal enters saltwater. The results indicate that the main part of the paracellular diffusion barrier to proteins and ions is located in the epithelium rather than the endothelium. Communicating (gap) junctions are present between adjacent pavement cells, between pavement and basal cells and between pillar cells. These findings suggest that the epithelial cells and the pillar cells in the water-blood barrier of lampreys both form functional syncytia. The results are discussed in the context of ion-transporting epithelia in other aquatic vertebrates.This paper is dedicated to Professor H. Leonhardt on the occasion of his 75th birthday  相似文献   

15.
Cell junctions in the early chick embryo--a freeze etch study   总被引:13,自引:0,他引:13  
Cell junctions in the early chick embryo have been examined in freeze-etch specimen. Well developed zonulae occludentes are found in the epiblast as early as stage 4. Large gap junctions are also found in the epiblast at this stage. In those cells which have left the surface to form mesenchymal structures (Hensen's node, juxtanodal mesenchyme, primitive streak mesenchyme), one finds not only gap, but also tight, junctions. These junctions do not form continuous belts, but appear as fragments, often reduced to single strands, of typical tight junctions. They probably correspond to the focal tight junctions described earlier in sectioned material. The origin and possible significance of these contacts is discussed, and it is suggested that they represent remnants of junctions between neighboring cells in the epiblast. These junctional remnants slowly disappear by “dilution,” either through cell division and/or cell movement. The appearance of newly formed gap junctions is also described.  相似文献   

16.
Summary Morphometric analysis of the alterations in interhepatocyte junctions induced by bile duct ligation revealed that after 48 h, during which time the serum bilirubin increased 6 to 8 fold, the membrane area occupied by gap junctions on the apico-lateral and medio-lateral sides decreased from 3.6% in controls to 0.02% in the ligated group. The strands of the zonulae occludentes were reduced in number and showed increased discontinuities.Within 45 min of recanalization of the common bile duct, clusters of particles appeared within and adjacent to the tight junctional areas or in the lateral hepatocyte membrane. Subsequently, the particle aggregations localized in the apico-lateral membrane areas increased in number and size becoming finally indistinguishable from those of controls within 96 h after the onset of recanalization. The zonulae occludentes also rearranged and reestablished their original structure during this period. The serum bilirubin fell to normal within 24 h of recanalization. It is concluded that metabolic and ultrastructural restitution associated with the recanalization of the ligated bile duct have no strict temporal correlation to one another.These studies provide further evidence that alterations in gap and tight junctions induced by pathological processes, e.g. during bile duct ligation, are completely reversible when regeneration occurs.Summer student from Harvard Medical School, Boston (USA)  相似文献   

17.
Summary By the use of thin sections and freeze-fracture replicas the glomerular and tubular structures of the kidney of the frog (Rana esculenta) were studied with special reference to intercellular junctions.In the glomerulus the filtration barrier is of very variable thickness, and frequent tight and gap junctional contacts occur between podocyte processes.Although structurally less elaborate, the proximal tubule resembles its mammalian counterpart. In the initial part the tight junctions are relatively shallow but become very broad in the mid and distal portions of the proximal tubule. The proximal tubular cells are extensively linked by gap junctions. In some animals the shapes of the cells in the proximal and distal portions of the proximal tubule were markedly different.The distal tubule consists of two segments which differ mainly in the pattern of interdigitations and the structure of the zonulae occludentes. Similarities with the tight junctional morphology of the mammalian distal tubule are striking. In the first part of the distal tubule (diluting segment) a narrow band of parallel tight junctions is found closely resembling that found in the mammalian straight distal tubule; in the more distal part of the distal tubule, however, a broad band of anastomosing tight junctional strands exists, like the zonula occludens of the mammalian convoluted distal tubule.The connecting tubule displays cellular dimorphism: its wall contains a mixture of light and dark (flask) cells. The luminal and basolateral membranes of the flask cells are covered with numerous rod-shaped particles. The tight junctions of the connecting tubule are broad and increase in depth and number of strands along its length; they are typical of a very tight epithelium.In spite of several dissimilarities with phylogenetically younger kidneys our findings suggest that many structural principles of the mammalian kidney are also represented in the kidneys of amphibians. The structural-functional relationships are discussed.  相似文献   

18.
Summary Two kinds of occluding junctions are found between ileal epithelial cells of suckling rats: apical zonulae occludentes (ZO) and fasciae occludentes (FO) which are associated with the lateral plasma membranes of many epithelial cells. In unfixed preparations, glycerol treatment induces the further proliferation of extensive fasciae occludentes. Both kinds of junction have identical structural elements when visualized in freeze fracture replicas, although the arrangement of these elements differs. Zonulae occludentes consist of networks of branching and anastomosing linear ridges or rows of 10 nm particles with 20–30 nm spaces between the rows which form narrow belt-like structures around the apical region of adjacent cells. Fasciae occludentes, on the other hand, consist of similar linear ridges or rows of particles but the junction strands are often discontinuous, open ended and only occasionally intersect with each other. Several different fracture planes through the plasma membrane in the region of the occluding junctions have been observed and these provide further evidence that two components, one from each membrane, fused at the level of the extracellular space, form the junction sealing element. Furthermore, we present evidence which indicates a staggered rather than an in-register arrangement of these two components.This study was supported in part by National Institutes of Health Program Project No. NS10299 and National Institutes of Health Sciences Advancement Award No. RR06148 (J.D.R.) and by the Cancer Research Campaign (S.K.) and Medical Research Council (A.R.L.)  相似文献   

19.
The structure and function of intercellular tight (occluding) junctions, which constitute the anatomical basis for highly regulated interfaces between tissue compartments such as the blood-testis and blood-brain barriers, are well known. Details of the synthesis and assembly of tight junctions, however, have been difficult to determine primarily because no model for study of these processes has been recognized. Primary cultures of brain capillary endothelial cells are proposed as a model in which events of the synthesis and assembly of tight junctions can be examined by monitoring morphological features of each step in freeze-fracture replicas of the endothelial cell plasma membrane. Examination of replicas of non-confluent monolayers of endothelial cells reveals the following intramembrane structures proposed as 'markers' for the sequential events of synthesis and assembly of zonulae occludentes: development of surface contours consisting of elongate terraces and furrows (valleys) orientated parallel to the axis of cytoplasmic extensions of spreading endothelial cells, appearance of small circular PF face depressions (or volcano-like protrusions on the EF face) that represent cytoplasmic vesicle-plasma membrane fusion sites, which are positioned in linear arrays along the contour furrows, appearance of 13-15 nm intramembrane particles at the perimeter of the vesicle fusion sites, and alignment of these intramembrane particles into the long, parallel, anastomosed strands characteristic of mature tight junctions. These structural features of brain endothelial cells in monolayer culture constitute the morphological expression of: reshaping the cell surface to align future junction-containing regions with those of adjacent cells, delivery and insertion of newly synthesized junctional intramembrane particles into regions of the plasma membrane where tight junctions will form, and aggregation and alignment of tight junction intramembrane particles into the complex interconnected strands of mature zonulae occludentes. The distribution of filipin-sterol complex-free regions on the PF intramembrane fracture face of junction-forming endothelial plasmalemmae corresponds precisely to the furrows, aligned vesicle fusion sites and anastomosed strands of tight junctional elements.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
In pancreatic lobules incubated in Ca2+-free Krebs-Ringer bicarbonate solution +0.5 mM EGTA tight junctions are first disarrayed and then break up into fasciae occludentes and small fibrillar fragments, which move laterally in the plane of the plasmalemma and often wind up around the gap junctions. The interruption of the continuity of tight junctions results in the disappearance of the difference in intramembranous particle density between the lateral and luminal regions of the plasmalemma. These results are consistent with the interpretation of tight junctions as dynamic structures, probably resulting from a specific polymerization of intramembranous particles and confirm that tight junctions might have a role in establishing and maintaining the regional differences of the plasmalemma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号