首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The locus specificities which enable retinal ganglion cells to assemble a topographic retinotectal map are patterned about a pair of (anteroposterior and dorsoventral) retinal axes set down in the early eye bud. We have transplanted a Xenopus laevis eye bud, at stage 2324 when the retinal field is still responsive to the axial signals from the surrounding tissues, into the enucleated eye socket of a comparable stage Ambystoma maculatum embryo. Three days later, when the Xenopus eye had reached early larval stages and was no longer responsive to extraocular signals, the eye was retransplanted into the socket of the Xenopus final carrier embryo. The pattern of retinotectal connections between the eye and the carrier's optic tectum was examined by electrophysiological analysis of the visuotectal projections. The results indicated that many of the retinae had patterned locus specificities about axes derived from the salamander intermediate host. We infer that axial signaling involves fundamental cellular processes which have been highly conserved during evolution.  相似文献   

3.
During normal in vivo development, the optic stalk gives rise only to macroglial cells. When we cultured optic stalks isolated from their immediate in situ environment, we found that optic stalks obtained from embryos at Theiler stages 16 to 19 gave rise to both neurons and glial precursor cells, whereas optic stalks obtained from embryos at stages 20 to 23 gave rise to only glial precursor cells. Between stages 19 and 20 (a period of 12 hr of development) the optic stalk changes from a pseudostratified to a simple epithelium, and concomitant with these changes is the growth of the neural retinal axons along the optic stalk. An attractive hypothesis to explain these observations is that the environmental cues that restrict the differentiation capability of the optic stalk ventricular cell population in vivo emanate from the retinal axons. Whether this is due to a restriction in the differentiation capability of a pleuripotential ventricular cell or to a selective cell death of a subpopulation of ventricular cells already committed to the neuronal lineage of differentiation is not yet resolved.  相似文献   

4.
A developmental program is established in the stage 28–32 optic cup of Xenopus embryos, which specifies the permanent AP and DV reference axes for positional information in the retina, and thereby determines the pattern of spatial deployment of ganglion cell locus specificities subserving assembly of retinotopically organized connections in the tectum. This developmental program has previously proved unmodifiable in intact eye primordia submitted to a variety of rotation, transplantation, and tissue culture conditions. Here we report that the program can be modified by surgical transection of stage 32 eye primordia (with subsequent fusion of the disconnected halves to reconstitute a whole eye) and by fusion of whole stage 38 eyes, although most of the transected eyes did develop normal visuotectal projections. The remaining vertically transected eyes, and all eyes formed when a left and right stage 38 eye fused along apposed temporal edges, developed “double-nasal compound” projections to the tectum: the nasal and temporal halves of the adult retina each projected to the entire tectum, and each tectal locus was driven from two stimulus positions symmetrically disposed about the vertical meridian. The remaining horizontally transected eyes, and all eyes formed when a left and right stage 38 eye fused along apposed dorsal edges, developed “double-ventral compound” projections to the tectum: the dorsal and ventral halves of the adult retina each projected to the entire tectum, and each tectal locus was driven from two stimulus positions symmetrically disposed about the horizontal meridian. The results are considered in terms of (1) the kinds of cellular processes that could mediate the observed modifications in the original developmental program; (2) the nature and stability of the program; and (3) the general suitability of eye fragment-fusion experiments for analysis of the assembly of retinotectal connections.  相似文献   

5.
The eyes and optic lobes of adult Drosophila melanogaster comprise a highly organized system of interconnected neurons. The eye and optic lobe primordia are physically separate during the embryonic and larval stages of development, and these tissues do not come into contact until the third larval instar, as a consequence of axons growing from the receptor cells of the developing eyes to the primordial optic lobes. After this contact, the axons of the eyes arrange themselves into their complex and orderly adult pattern. Simultaneously, the optic lobe cells begin elaborating axons which organize into their precise adult array. One question posed by this system is: Does cellular pattern formation in either the eyes or optic lobes depend on eye-brain interactions, or do the two tissues organize autonomously? To answer this question, mutations were found which cause abnormal ommatidial array in the eyes and which also perturb the normal adult axon array in the optic lobes. By means of X ray-induced somatic recombination and by genetically controlled mitotic chromosome loss (gynandromorph formation), flies mosaic for genotypically mutant and normal tissue were constructed. Analysis of the neuronal array in mosaic flies in which eye and optic lobe tissue differed genotypically showed that the axon array phenotype of the optic lobe depends on the genotype of the eye tissue innervating that lobe, while the eye phenotype does not depend on optic lobe genotype. Thus, the axonal organization of the D. melanogaster optic lobe has been shown to depend on the transmission of information from the eyes to the optic lobes.  相似文献   

6.
Excision experiments performed on amphibian neurulae by H. Spemann (1901, Verh. Anat. Ges.15, 61–79) and W. H. Lewis (1907, Amer. J. Anat.7, 259–276) have localized the eye primordia in the anterior neural plate. This was confirmed by the results of the classical vital dye mapping studies by E. Manchot (1929, Wilhelm Roux Arch. Entwicklungsmech.116, 689–709) and (M. W. Woerdeman, 1929, Wilhelm Roux Arch. Entwicklungsmech.116, 220–241). Spemann published a figure which might suggest that the prospective eye vesicles are still located in this position when the neural folds are present. This paper shows that the eye primordia move from the anterior neural plate into the forming neural folds. This result was obtained by time-lapse photography and excision experiments. Grafting experiments exchanging presumptive optic tissue between wild-type and albino embryos were also performed.  相似文献   

7.
The left eye was removed from Stage 56 Xenopus tadpoles. Two to 9 months after metamorphosis, electrophysiologic analysis showed that the surviving (right) eye mediated a normal visual field projection to the left (contralateral) optic tectum. In addition, a peripheral region of the same retina innervated the entire right (ipsilateral) tectum. Primary evidence that indicates this anomalous ipsilateral projection was due to direct retina-to-tectum innervation comes from singleunit analysis, latency measurements, and tectal lesion studies. Thus, the peripheral retina simultaneously connected in much different patterns to the two optic tecta, solely on the basis of the presence (in the left tectum) or absence (in the right tectum) of central retinal fibers. This documents a role for fiber-fiber interaction (such as repulsion or competition) acting in combination with fiber-tectum interactions in the formation of the retinotectal map.  相似文献   

8.
In this study, we have characterized the ocular defects in the recessive zebrafish mutant blowout that presents with a variably penetrant coloboma phenotype. blowout mutants develop unilateral or bilateral colobomas and as a result, the retina and retinal pigmented epithelium are not contained within the optic cup. Colobomas result from defects in optic stalk morphogenesis whereby the optic stalk extends into the retina and impedes the lateral edges of the choroid fissure from meeting and fusing. The expression domain of the proximal optic vesicle marker pax2a is expanded in blowout at the expense of the distal optic vesicle marker pax6, suggesting that the initial patterning of the optic vesicle into proximal and distal territories is disrupted in blowout. Later aspects of distal optic cup formation (i.e. retina development) are normal in blowout mutants, however. Positional cloning of blowout identified a nonsense mutation in patched1, a negative regulator of the Hedgehog pathway, as the underlying cause of the blowout phenotype. Expanded domains of expression of the Hedgehog target genes patched1 and patched2 were observed in blowout, consistent with a loss of Patched1 function and upregulation of Hedgehog pathway activity. Moreover, colobomas in blowout could be suppressed by pharmacologically inhibiting the Hedgehog pathway with cyclopamine, and maximal rescue occurred when embryos were exposed to cyclopamine between 5.5 and 13 hours post-fertilization. These observations highlight the critical role that Hedgehog pathway activity plays in mediating patterning of the proximal/distal axis of the optic vesicle during the early phases of eye development and they provide genetic confirmation for the integral role that patched1-mediated negative regulation of Hedgehog signaling plays during vertebrate eye development.  相似文献   

9.
Accumulating evidence suggests that Sonic hedgehog (Shh) signaling plays a crucial role in eye vesicle patterning in vertebrates. Shh promotes expression of Pax2 in the optic stalk and represses expression of Pax6 in the optic cup. Shh signaling contributes to establishment of both proximal–distal and dorsal–ventral axes by activating Vax1, Vax2, and Pax2. In the dorsal part of the developing retina, Bmp4 is expressed and antagonizes the ventralizing effects of Shh signaling through the activation of Tbx5 expression in chick and Xenopus. To examine the roles of Shh signaling in optic cup formation and optic stalk development, we utilized the Smoothened (Smo) conditional knockout (CKO) mouse line. Smo is a membrane protein which mediates Shh signaling into inside of cells. Cre expression was driven by Fgf15 enhancer. The ventral evagination of the optic cup deteriorated from E10 in the Smo-CKO, whereas the dorsal optic cup and optic stalk develop normally until E11. We analyzed expression of various genes such as Pax family (Pax2/Pax6), Vax family (Vax1/Vax2) and Bmp4. Bmp4 expression was greatly upregulated in the optic vesicle by the 21-somite stage. Then Vax1/2 expression was decreased at the 20- to 24-somite stages. Pax2/6 expression was affected at the 27- to 32-somite stages. Our data suggest that the effects of the absence of Shh signaling on Vax1/Vax2 are mediated through increased Bmp4 expression throughout the optic cup. Also unchanged patterns of Raldh2 and Raldh3 suggest that retinoic acid is not the downstream to Shh signaling to control the ventral optic cup morphology.  相似文献   

10.
The phenotype of axolotls (Ambystoma mexicanum) homozygous for the mutant gene e (“eyeless”) is different from normal in that (1) no optic vesicles develop in ee embryos, (2) ee larvae from posthatching onward are darker than normal white larvae, and (3) fully grown ee animals are sterile.Experiments reported here show that eyelessness in ee embryos results from a direct effect of the gene on presumptive forebrain ectoderm; not on the mesoderm that induces the ectoderm to form eyes. Homotopic grafts of normal presumptive ectoderm on ee blastula hosts differentiated complete eyes, but reciprocally grafted embryos were always eyeless. Similarly, grafts of either ee or normal presumptive prechordal mesoderm into normal hosts gave normal eyes, but in the mutant hosts no eyes developed. Thus the e gene affects only the ectodermal component of the inductive system for eye formation.Genetically eyeless (pigmented) cells, when interspersed prior to gastrulation among genetically eyed (albino) cells in the eye preprimordium, are induced to form clones of pigmented retinal epithelium in the albino host eye.The sterility of ee larvae appears also to be due to a direct effect of the e gene on the ectodermal (neural plate) primordium of the hypothalamus. Grafts of normal cells which included the hypothalamic, but not the optic or anterior pituitary primordia, always restored fertility to ee recipients.The mutant pigmentation phenotype was demonstrated to be a consequence of eyelessness and, therefore, an indirect effect of the gene. The pigment pattern of normal embryos from which both optic vesicles were removed resembles that of the mutants. In addition, implantation of a single full-sized, functional eye was able to restore the normal pigmentation, but not fertility, to ee recipients.  相似文献   

11.
We used a peptide antibody to a conserved sequence in the motor domain of kinesins to screen a Xenopus ovary cDNA expression library. Among the clones isolated were two that encoded a protein we named XCTK2 for Xenopus COOH-terminal kinesin 2. XCTK2 contains an NH2-terminal globular domain, a central α-helical stalk, and a COOH-terminal motor domain. XCTK2 is similar to CTKs in other organisms and is most homologous to CHO2. Antibodies raised against XCTK2 recognize a 75-kD protein in Xenopus egg extracts that cosediments with microtubules. In Xenopus tissue culture cells, the anti-XCTK2 antibodies stain mitotic spindles as well as a subset of interphase nuclei. To probe the function of XCTK2, we have used an in vitro assay for spindle assembly in Xenopus egg extracts. Addition of antibodies to cytostatic factor- arrested extracts causes a 70% reduction in the percentage of bipolar spindles formed. XCTK2 is not required for maintenance of bipolar spindles, as antibody addition to preformed spindles has no effect. To further evaluate the function of XCTK2, we expressed XCTK2 in insect Sf-9 cells using the baculovirus expression system. When purified (recombinant XCTK2 is added to Xenopus egg extracts at a fivefold excess over endogenous levels) there is a stimulation in both the rate and extent of bipolar spindle formation. XCTK2 exists in a large complex in extracts and can be coimmunoprecipitated with two other proteins from extracts. XCTK2 likely plays an important role in the establishment and structural integrity of mitotic spindles.  相似文献   

12.
Distribution of FMRFamide-like immunoreactivity was examined in the larval ventral nerve cord of the eastern spruce budworm, Choristoneura fumiferana (Lepidoptera : Tortricidae). Indirect immunofluorescent methods revealed the existence of 3 groups of FLI neurons in each ganglion. The neurons are distributed in a bilaterally symmetrical fashion at the anterodorsal, midlateral and posteroventral regions of the ganglia. There are 4 FMRFamide-like immunoreactive fiber tracts on the dorsal surface of the ganglia to which the anterodorsal FLI neurons project ipsilaterally, while the midlateral pair projects both ipsi-, and contralaterally. The last abdominal ganglion (AG8) has 4 additional pairs of FLI neurons; and axons from some of these extend into the median abdominal nerve, which suggests some role for this neuropeptide in the control of posterior structures of the larva.  相似文献   

13.
In early-organogenesis-stage mouse embryos, the posteroventral foregut endoderm adjacent to the heart tube gives rise to liver, ventral pancreas and gallbladder. Hepatic and pancreatic primordia become specified in the posterior segment of the ventral foregut endoderm at early somite stages. The mechanisms for demarcating gallbladder and bile duct primordium, however, are poorly understood. Here, we demonstrate that the gallbladder and bile duct progenitors are specified in the paired lateral endoderm domains outside the heart field at almost the same timing as hepatic and pancreatic induction. In the anterior definitive endoderm, Sox17 reactivation occurs in a certain population within the most lateral domains posterolateral to the anterior intestinal portal (AIP) lip on both the left and right sides. During foregut formation, the paired Sox17-positive domains expand ventromedially to merge in the midline of the AIP lip and become localized between the liver and pancreatic primordia. In Sox17-null embryos, these lateral domains are missing, resulting in a complete loss of the gallbladder/bile-duct structure. Chimera analyses revealed that Sox17-null endoderm cells in the posteroventral foregut do not display any gallbladder/bile-duct molecular characters. Our findings show that Sox17 functions cell-autonomously to specify gallbladder/bile-duct in the mouse embryo.  相似文献   

14.
Ultrastructural evidence indicates that Xenopus retinal ganglion cell axons differentiate early, between stages 28 and 32. Light microscope studies indicated the presence of argryophilic material in the ventral retina and optic stalk of early embryos. Ultrastructural analysis of this region confirmed the presence of axons in the stalk and interstices of ventral retinal cells. Axons containing aligned microtubules and neurofilaments and elongated mitochondria with a paucity of other cell inclusions are found with increasing frequency in the ventral retina from stages 28 through 3334. Central and dorsal regions of the retinas examined show little or no evidence of axons. A discrete, small bundle of axons is found in the optic stalk of stage 28 embryos and by stage 3031 the number of axons in bundles has increased, suggesting early fasciculation. Between stages 28 and 3334 (± 12 hr) extracellular space surrounding early axons diminishes and processes from neuroretinal cells in contact with axons surround developing axon bundles. The evidence presented suggests that axon initiation occurs in stages much earlier than previously reported. Other investigators have failed to detect ganglion cell differentiation prior to stage 32 possibly because they examined regions of the retina with few axons. Thus, experiments which rotate the retina in the orbit may have to be reevaluated since regenerating axons may use previously established pathways to organize and “home in” on tectal target cells.  相似文献   

15.
Eya1 and other Eya proteins are important regulators of progenitor proliferation, cell differentiation and morphogenesis in all three germ layers. At present, most of our knowledge of Eya1 distribution is based on in situ hybridization for Eya1 mRNA. However, to begin to dissect the mechanisms underlying Eya1 functions, we need a better understanding of the spatiotemporal distribution of Eya1 proteins during embryonic development, their subcellular localization and their levels of expression in various tissues. Here we report the localization of Eya1 protein throughout embryonic development from neural plate stages to tadpole stages of Xenopus laevis using a specific antibody for Xenopus Eya1. Our study confirms the expression of Eya1 protein in cranial placodes, placodally derived sensory primordia (olfactory epithelium, otic vesicle, lateral line primordia) and cranial ganglia, as well as in somites, secondary heart field and pharyngeal endoderm. In addition, we report here a novel expression of Eya1 proteins in scattered epidermal cells in Xenopus. Our findings also reveal that, while being predominantly expressed in nuclei in most expression domains, Eya1 protein is also localized to the cytoplasm, in particular in the early preplacodal ectoderm, some placode-derived ganglia and a subset of epidermal cells. While some cytoplasmic roles of Eya1 have been previously described in other contexts, the functions of cytoplasmic Eya1 in the preplacodal ectoderm, cranial ganglia and epidermal cells remain to be investigated.  相似文献   

16.
17.
Floral initiation and development of Hedysarum varium, Onobrychis melanotricha and Alhagi persarum was studied using epi-illumination light-microscopy techniques. The studied species belong to the tribe Hedysareae of the inverted repeat loss clade (IRLC clade), which is characterized by missing the large inverted repeat in the chloroplast genome. The main aim of our study was to determine developmental bases for similarities and differences among the three taxa and to verify the position of Alhagi relative to other genera of the IRLC clade. According to our observations, bracteoles are missing in Onobrychis melanotricha, but are present in the other two species. All three species share unidirectional sepal initiation starting with a median abaxial sepal and bidirectional petal initiation. Stamen initiation is unidirectional in all except in the outer stamen whorl of Hedysarum varium, where it is bidirectional. An important ontogenetic feature in O. melanotricha is the existence of five common primordia, which give rise to petal and stamen primordia. Although in H. varium and O. melanotricha common primordia are observed at some stages in floral organ initiations, in Alhagi all organs are initiated separately. Moreover, overlap in time of floral organs initiation occurs in H. varium and O. melanotricha, but not in A. persarum. The carpel initiates concurrently with the petal primordia in all. It might be presumed that Alhagi is primitive in relation to the other studied Hedysareae taxa, due to the presence of bracteoles, the absence of common primordia, and the lack of overlap in time of different organ initiations.  相似文献   

18.
The role of cell death during morphogenesis of the mammalian eye   总被引:5,自引:0,他引:5  
Serial sections of embryonic rat eyes were stained with hematoxylin and eosin, quantified (by counting pycnotic and viable nuclei), reproduced by camera lucida on wax plates, and moulded into reconstructions in order to study the normal progression of cellular death during morphogenesis. At least nine distinct necrotic loci (A through I) can be distinguished. Immediately following contact between the retina and surface ectoderm (day 11) degenerating cells were observed in (A) the ventral extent of the optic vesicle, beginning in the mid-retinal primordium and continuing ventrally in the optic stalk, (B) in the rostral optic stalk base, and (C) in the surface ectoderm encircling the early lens placode. No degeneration was observed in the dorsal half of the presumptive retina, in the entire pigment epithelium, or in the lens placode proper. During day 11.5 the lens placode thickens and forms a degenerating locus (D) in its ventral portion opposite the underlying pycnotic zone in the retina (A). During day 12 the ventral pycnotic zone (A) divides into two subunits (A1 and A2). Invagination of the lens displaces its marginal and ventral components (C and D) so that they come to occupy the lens pore area and presumptive corneal epithelium. Simultaneous invagination of the retinal rudiment juxtaposes the pigment epithelium which concurrently forms a necrotic area (E) adjacent ventrally to that in the retina (A1). Degeneration appears in the caudal optic stalk (I). The density of viable cells decreases adjacent to pycnotic areas in the retina and pigment epithelium and increases within these death centers. During day 13 the optic fissure forms within the subunits of the ventral pycnotic zone (A1 and A2). Degenerations are seen in the dorsal optic stalk (F) and in the walls of the optic fissure (G and H). Throughout these stages necrosis appears only in those portions of the eye rudiment where invagination is either retarded or completely absent. In part, these observations suggest that cell death serves (1) to retard or inhibit invagination within death centers, (2) to integrate the series of invaginations which mould the dorsal optic cup and optic fissure, (3) to assist formation of the pigment epithelium monolayer, and (4) to orient the lens vesicle within the eye cup. The spatio-temporal relationship between necrotic loci suggests that pycnotic cells in the retina may influence their production in the lens and pigment epithelium. Preliminary observations on the mouse, pig, and human substantiate those on the rat.  相似文献   

19.
An orderly pattern of cell death accompanies growth of retinal ganglion cell axons through the optic stalk of the chick embryo. In order to determine ifthe cell death process in this adage is preprogrammed at earlier stages or if other factors play a role, we cultured optic stalk primordia at a stage prior to retinal differentiation, either alone or in the presence of head or limb bud mesenchyme. When optic stalk was alone, many cells differentiated into neurons. However, when mesenchyme cells of either head or limb bud origin were combined with the stalk, the stalk cells either degenerated, were unrecognizable in the mesenchyme mass, or retained their epithelial arrangement and became pigmented. Mesenchyme and/or neural crest which normally migrate around the stalk at the same time that ganglion cell axons penetrate this structure may therefore be involved in some aspect of the cell death process. Since many optic stalk cells in vitro differentiate into neurons, these cells may represent the population of cells which in situ would normally die.  相似文献   

20.
A number of cases of blindness appeared among a group of cultured Xenopus laevis. The blind toads lacked eyeballs and optic nerves and were consistently dark in color. Similar anatomical changes in the head and pigmentation were produced experimentally by removing the eyeballs of tadpoles or young adult toads. The dark pigmentation of blind Xenopus: was shown to be due to the continuous release of MSH from the pars intermedia of the pituitary, since hypophysectomy led to the complete blanching of the dermal and epidermal melanophores. MSH activity in the pars intermedia of blind toads was extremely high in comparison with that of normal animals. No special difference with respect to the general growth and behaviour was found between normal and blind Xenopus, which suggests that the pituitary functions other than that of the pars intermedia are not affected by the state of the optic nerves. These observations suggest that the retrogressive degeneration of the optic nerves exerts a profound effect on the secretory activity of the pars intermedia via the hypothalamic controlling center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号