首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper, phospholipids, and cholesterol remain tightly bound to the ferroxidase-II protein from human serum following extensive purification. In vivo studies with copper-deficient rats and in vitro studies with general and copper-specific chelating agents strongly suggest that the copper atoms associated with purified ferroxidase-II are extremely tightly bound and are essential for its catalytic activity. Only partial removal of the protein bound copper atoms can be achieved by treatment with chelating agents; however, virtually complete loss of the bound copper atoms accompanies the hydrolysis and removal of the bound lipid components. No dissociation or denaturation of ferroxidase-II occurs upon hydrolysis or removal of the bound lipid components. These results suggest that intact lipid components are necessary for the binding of copper to ferroxidase-II and that the association of the protein, lipid, and copper components is indispensable for the catalytic activity of ferroxidase-II.  相似文献   

2.
Extracellular Proteases of Mucor pusillus   总被引:2,自引:2,他引:0       下载免费PDF全文
Mucor pusillus was grown in different media for a period of 92 h, and the media were investigated for both milk-clotting and protease activities. It was observed that the ratio of extracellular milk-clotting activity to protease activity was the highest for 3% corn steep liquor containing 1% glucose as the source of carbon. Variation of both milk-clotting and protease activities was studied during the growth of the organism in the medium stated above. Separation of protease was carried out by ion-exchange chromatography at pH 8.0. Fractions collected were assayed for both activities simultaneously. The findings suggested that, instead of only one major acid protease, as reported by previous workers, two major acid proteases were produced. One of them had significant rennin-like activity, and the other lacked it. The former could be assumed to be the enzyme reported and studied by previous workers. The existence of two proteases was further confirmed by the appearance of two protease activity bands on polyacrylamide gels after electrophoresis. An attempt was made to separate the rennin-like enzyme from nonspecific protease activity by ammonium sulfate fractionation followed by ion-exchange chromatography at pH 6.0. The results indicated that the nonspecific protease activity due to the enzyme that lacked rennin action was substantially removed by the ammonium sulfate fractionation.  相似文献   

3.
Organisms of Escherichia coli 1829 become alkali sensitized on transfer from pH 7·0 to pH 5·5 but they also secrete extracellular agents which induce alkali sensitivity when added (in neutralized filtrates) to organisms growing at pH 7·0. In contrast, filtrates from cultures grown at pH 7·0 have no effect. Filtrates were inactivated by protease but not by heat treatment in a boiling water-bath, suggesting that a very heat-stable protein is involved in alkali sensitivity induction. A heatstable low molecular weight component (or components) may also be needed for induction, or the induction protein itself may be of low molecular weight. Strains with lesions in hns, fur or himA produced almost inactive filtrates and it therefore appears that H-NS, Fur and IHF are involved in synthesis of the induction components. As the presence of protease during incubation at pH 5·5 totally abolished alkali sensitization of strain 1829 while inhibition of sensitization induction occurred if the induction components were removed by filtration or dialysis during pH 5·5 incubation, it is proposed that the extracellular induction components (EICs) are essential for the original sensitization response. These results suggest that sensitization induction occurs by a different mechanism to that which is believed to occur for most bacterial inducible response systems; these are claimed to involve exclusively intracellular reactions and components whereas the present response involves functioning of extracellular components.  相似文献   

4.
Ogrydziak DM  Mortimer RK 《Genetics》1977,87(4):621-632
Mutants of Saccharomycopsis lipolytica with reduced ability to produce zones of clearing on skim-milk agar plates were isolated and their properties studied. For 18 mutants it was possible to score unambiguously segregants of crosses between these mutants and wild type for extracellular protease production. These mutants all produce reduced levels of extracellular protease in liquid culture. The mutations are recessive and are in nuclear genes. The 18 mutations define 10 or 11 complementation groups, no two of which are closely linked. Mutants in four of the complementation groups also produced reduced levels of extracellular RNAse, and the reduced levels of extracellular protease and RNAse production segregate together. Five of the mutants exhibited reduced mating frequency, and one mutant was osmotic remedial for extracellular protease production. These results demonstrate that many genes can affect extracellular protease production. Besides mutations in the structural gene and in regulatory genes, mutations are likely to be in genes involved in steps common to the production of several extracellular enzymes or in genes coding for cell wall or membrane components necessary for extracellular enzyme production.  相似文献   

5.
A major strategy for purifying and isolating different types of intracellular organelles is to separate them from each other based on differences in buoyant density. However, when cells are disrupted prior to centrifugation, proteins and organelles in this non-native environment often inappropriately stick to each other. Here we describe a method to separate organelles by density in intact, living Drosophila embryos. Early embryos before cellularization are harvested from population cages, and their outer egg shells are removed by treatment with 50% bleach. Embryos are then transferred to a small agar plate and inserted, posterior end first, into small vertical holes in the agar. The plates containing embedded embryos are centrifuged for 30 min at 3000g. The agar supports the embryos and keeps them in a defined orientation. Afterwards, the embryos are dug out of the agar with a blunt needle.Centrifugation separates major organelles into distinct layers, a stratification easily visible by bright-field microscopy. A number of fluorescent markers are available to confirm successful stratification in living embryos. Proteins associated with certain organelles will be enriched in a particular layer, demonstrating colocalization. Individual layers can be recovered for biochemical analysis or transplantation into donor eggs. This technique is applicable for organelle separation in other large cells, including the eggs and oocytes of diverse species.  相似文献   

6.
The specific activity of a neutral protease (assayed at pH 8, using azocasein as substrate) in Tetrahymena doubled or tripled within a few hours after the onset of shaking of statically grown, stationary phase cultures. The increase occurred during a period when several peroxisomal enzymes were decreasing. The increase was prevented by actinomycin D or cycloheximide, both of which also prevented the decrease in peroxisomal enzymes. Protease activity towards hemoglobin at pH 3.6 increases during this period, but to a lesser extent, while activity towards BANA (α-N-benzoyl-d,l-arginine 2-naphthylamide) was almost unchanged. The three protease activities have been partially purified by gel filtration and affinity chromatography, and are indistinguishable on this basis. Chromatography on DEAE-Sephadex yields three peaks having activity towards BANA but not towards hemoglobin and azocasein, and two peaks having activity towards all three substrates. The activities towards azocasein and hemoglobin are also indistinguishable on the basis of sensitivity to a variety of inhibitors, to temperature, and chromatography on CM Sephadex. The partially purified protease has an absolute sulfhydryl requirement when azocasein is used as substrate and is inhibited by leupeptin, chymostatin, TLCK, TPCK, and iodacetamide but not by pepstatin or PMSF. Activity towards BANA is much more susceptible to these inhibitors than is that towards azocasein. About half of the activity towards azocasein sediments with the large particle (40,000g-min) fraction. The distribution between two components of this fraction resembles that of a lysosomal marker. However, the activity did not follow the distribution of marker enzymes of any of the typical cell organelles when either subfraction was centrifuged through a sucrose density gradient, nor did it follow; the distribution pattern of the other two protease activities. Much of the activity, in fact, remained at the top of the gradient, even after repeated washings of the particulate fraction or fractionation in the presence of a membrane-stabilizing agent or a protease inhibitor. The protease or proteases appears to be in part responsible for the rapid loss of enzyme activity that is characteristic of Tetrahymena homogenates. The existence of a protease that can attack cellular enzymes at physiological pH suggests that extralysosomal breakdown of proteins can occur in a eukaryotic cell and may be of importance in the regulation of cellular enzyme levels.  相似文献   

7.
Kallikrein 7 (hK7), a chymostatin-like serine protease, is overexpressed in pancreatic adenocarcinomas as well as other human cancers. Although it has been demonstrated to participate in normal desquamation by facilitating cell shedding at the skin surface, its role in human malignancies remains unclear. To investigate the ability of hK7 to degrade components of the extracellular matrix (ECM), recombinant hK7 was expressed and purified from cultured mammalian cells. Using a three-step chromatographic purification procedure, recombinant hK7 was obtained that displayed robust proteolytic activity against a fluorogenic peptide substrate following activation by thermolysin. We demonstrate that the active protease is able to cleave fibronectin in a time-dependent manner, but not laminin, using an in vitro degradation assay. These findings indicate that the aberrant expression and secretion of hK7 in human tumors may facilitate metastasis by directly degrading components of the extracellular matrix and may thus play an important role in tumorigenesis.  相似文献   

8.
The marine bacterium Pseudoalteromonas sp. strain A28 was able to kill the diatom Skeletonema costatum strain NIES-324. The culture supernatant of strain A28 showed potent algicidal activity when it was applied to a paper disk placed on a lawn of S. costatum NIES-324. The condensed supernatant, which was prepared by subjecting the A28 culture supernatant to ultrafiltration with a 10,000-Mw-cutoff membrane, showed algicidal activity, suggesting that strain A28 produced extracellular substances capable of killing S. costatum cells. The condensed supernatant was then found to have protease and DNase activities. Two Pseudoalteromonas mutants lacking algicidal activity, designated NH1 and NH2, were selected after N-methyl-N′-nitrosoguanidine mutagenesis. The culture supernatants of NH1 and NH2 showed less than 15% of the protease activity detected with the parental strain, A28. The protease was purified to homogeneity from A28 culture supernatants by using ion-exchange chromatography followed by preparative gel electrophoresis. Paper-disk assays revealed that the purified protease had potent algicidal activity. The purified protease had a molecular mass for 50 kDa, and the N-terminal amino acid sequence was determined to be Ala-Thr-Pro-Asn-Asp-Pro. The optimum pH and temperature of the protease were found to be 8.8 and 30°C, respectively, by using succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as a substrate. The protease activity was strongly inhibited by phenylmethylsulfonyl fluoride, diisopropyl fluorophosphate, antipain, chymostatin, and leupeptin. No significant inhibition was detected with EDTA, EGTA, phenanthroline or tetraethylenepentamine. These results suggest that Pseudoalteromonas sp. strain A28 produced an extracellular serine protease which was responsible for the algicidal activity of this marine bacterium.  相似文献   

9.
The 32 000-dalton QB-protein of photosystem II (PS II) is rapidly damaged and removed from isolated pea thylakoids during incubation in the light resulting in a loss of photosynthetic electron flow through PS II. This in vitro photoinhibition is similar to that previously reported with intact Chlamydomonas cells. The damage occurs at a faster rate in vitro, however, due to the inability of isolated thylakoids to synthesize replacement QB-protein. The removal of the damaged QB-protein does not require any soluble components of the chloroplast stroma and is unaffected by the protease inhibitors phenyl-methylsulfonylfluoride or antipain. Unlike the effect of trypsin, no low mol. wt. membrane-bound or soluble fragments of the labelled QB-protein could be identified either by autoradiography or immunologically using polyclonal antibodies specific for the QB-protein. The lightinduced damage to the QB-protein (indicated by a loss of QB functional activity), preceded the removal of the protein from the membrane. We conclude that photodamage of the QB-protein generates a conformational change which renders the protein susceptible to attack by a highly efficient, intrinsic membrane protease.  相似文献   

10.
After a review of our present knowledge about the effects of proteases and protease inhibitors on cell growth and egg fertilization, the results of experiments where sea urchin and amphibian eggs were treated with two protease inhibitors (TPCK, TLCK) are described. Cleavage was hardly affected, but gastrulation quickly stopped or was incomplete. The morphogenetic abnormalities which follow can be explained by abnormal gastrulation and other factors: persistence of remnants of the fertilization membrane in sea urchin larvae and dissociation of the ectoderm cells in Xenopus embryos.  相似文献   

11.
Two different types of extracellular protease activity were identified in the culture fluid of Phanerochaete chrysosporium wild-type BKM-F grown in submerged batch culture on N-limited media. The first activity, which appears to be inherent to the active growth phase, displayed a maximum on day 2 and decreased to a very low level on day 4. The second activity, which appeared at day 8 following the peak of ligninase activity, seems to be characteristic of late secondary metabolism and is stimulated by carbon starvation. Cultures started with half the amount of glucose of other cultures showed a remarkably earlier development of secondary activity. In contrast, the fed-batch addition of glucose started when ligninase activity was at a maximum (day 6) completely repressed secondary protease activity and enhanced ligninase production. The addition of exogenous veratryl alcohol increased the level of secondary protease activity, whereas the oxygen supply pattern significantly affected both the time course and the level of overall proteolytic activity. The addition of phenylmethylsulfonyl fluoride to growing cultures (0, 1, or 6 days) diminished overall protease activity, while it significantly enhanced ligninase activity. In all cases, the time courses of protease and ligninase activities were negatively correlated, indicating that protease activity promotes the decline of ligninase activity in batch culture.  相似文献   

12.
Extracellular protease production by Drosophila imaginal discs   总被引:1,自引:0,他引:1  
We are investigating the role of extracellular proteases in imaginal disc eversion to understand the mechanism that controls cell rearrangements within epithelia. We have identified three cation-dependent neutral proteases released by Drosophila leg discs everting in culture. Serine protease inhibitors block disc eversion and inhibit activity of disc proteases. The pattern of extracellular proteases changes when eversion is blocked with added protease inhibitors. Changes in protease activity occur when released disc proteases are treated with trypsin. Trypsin treatment of intact imaginal discs releases protease and inhibitor activities to the medium, indicating their presence on the cell surface before release. Our results suggest that extracellular proteases are required for imaginal disc morphogenesis and are regulated by more than one mechanism.  相似文献   

13.

Background

Glucose induces H+-ATPase activation in Saccharomyces cerevisiae. Our previous study showed that (i) S. cerevisiae plasma membrane H+-ATPase forms a complex with acetylated tubulin (AcTub), resulting in inhibition of the enzyme activity; (ii) exogenous glucose addition results in the dissociation of the complex and recovery of the enzyme activity.

Methods

We used classic biochemical and molecular biology tools in order to identify the key components in the mechanism that leads to H+-ATPase activation after glucose treatment.

Results

We demonstrate that glucose-induced dissociation of the complex is due to pH-dependent activation of a protease that hydrolyzes membrane tubulin. Biochemical analysis identified a serine protease with a kDa of 35–40 and an isoelectric point between 8 and 9. Analysis of several knockout yeast strains led to the detection of Lpx1p as the serine protease responsible of tubulin proteolysis. When lpx1Δ cells were treated with glucose, tubulin was not degraded, the AcTub/H+-ATPase complex did not undergo dissociation, and H+-ATPase activation was significantly delayed.

Conclusion

Our findings indicate that the mechanism of H+-ATPase activation by glucose involves a decrease in the cytosolic pH and consequent activation of a serine protease that hydrolyzes AcTub, accelerating the process of the AcTub/H+-ATPase complex dissociation and the activation of the enzyme.

General significance

Our data sheds light into the mechanism by which acetylated tubulin dissociates from the yeast H+-ATPase, identifying a degradative step that remained unknown. This finding also proposes an indirect way to pharmacologically regulate yeast H+-ATPase activity and open the question about mechanistic similarities with other higher eukaryotes.  相似文献   

14.
Microbes in soils and other environments produce extracellular enzymes to depolymerize and hydrolyze organic macromolecules so that they can be assimilated for energy and nutrients. Measuring soil microbial enzyme activity is crucial in understanding soil ecosystem functional dynamics. The general concept of the fluorescence enzyme assay is that synthetic C-, N-, or P-rich substrates bound with a fluorescent dye are added to soil samples. When intact, the labeled substrates do not fluoresce. Enzyme activity is measured as the increase in fluorescence as the fluorescent dyes are cleaved from their substrates, which allows them to fluoresce. Enzyme measurements can be expressed in units of molarity or activity. To perform this assay, soil slurries are prepared by combining soil with a pH buffer. The pH buffer (typically a 50 mM sodium acetate or 50 mM Tris buffer), is chosen for the buffer''s particular acid dissociation constant (pKa) to best match the soil sample pH. The soil slurries are inoculated with a nonlimiting amount of fluorescently labeled (i.e. C-, N-, or P-rich) substrate. Using soil slurries in the assay serves to minimize limitations on enzyme and substrate diffusion. Therefore, this assay controls for differences in substrate limitation, diffusion rates, and soil pH conditions; thus detecting potential enzyme activity rates as a function of the difference in enzyme concentrations (per sample).Fluorescence enzyme assays are typically more sensitive than spectrophotometric (i.e. colorimetric) assays, but can suffer from interference caused by impurities and the instability of many fluorescent compounds when exposed to light; so caution is required when handling fluorescent substrates. Likewise, this method only assesses potential enzyme activities under laboratory conditions when substrates are not limiting. Caution should be used when interpreting the data representing cross-site comparisons with differing temperatures or soil types, as in situ soil type and temperature can influence enzyme kinetics.  相似文献   

15.
The activity of the neutral, Mg2+-stimulated sphingomyelinase of cultured neuroblastoma cells (N1E-115) is enriched in the plasma membrane fraction and is reduced following treatment of intact or broken cells with trypsin, α-chymotrypsin, papain, and protease. Two protease-sensitive enzymes of the cell interior (lactate dehydrogenase and NADPH-cytochrome c reductase) are not affected by protease treatment of intact cells. These results indicate that the neutral, Mg2+-stimulated sphingomyelinase is oriented externally on the plasma membrane of the cultured neuroblastoma cell.  相似文献   

16.
Apparently the extracellular protease of S. marcescens is present in protein- or protein derivative-free media only when the conditions favor an abundant growth and bacterial conglomerates are formed, which possibly could be explained by assuming that the proteins of dead bacteria or proteic metabolic products act as inducers of protease formation. Dilute solutions of gelatin induce the production of proteolytic activity after a short period of time and its rapid increase before the initial number of bacteria has been duplicated. Calcium is necessary to preserve the activity of the enzyme formed in synthetic media but not that produced in gelatin.  相似文献   

17.
Degradation of milk components through various enzymatic activities associated with the contamination of dairy products by Pseudomonas spp. can reduce the shelf life of processed milk. Reliable methods for differentiating among Pseudomonas spp. strains are necessary to identify and eliminate specific sources of bacterial contamination from dairy processing systems. To that end, we assessed the genetic diversity and dairy product spoilage potentials among a total of 338 Pseudomonas spp. isolates from raw and pasteurized milk and from environmental samples collected from four dairy processing plants. The majority of isolates were identified as P. fluorescens and P. putida by API 20 NE. A total of 42 different ribotype patterns were identified among a subset of 81 isolates. The presence of many different ribotypes within this collection indicates high genetic diversity among the isolates and suggests multiple origins of contamination within the processing plant and in dairy products. The extracellular enzyme activity patterns among Pseudomonas isolates appeared to be associated with ribotypes. Isolates with the same ribotype frequently had the same extracellular protease, lecithinase, and lipase activities. For example, isolates grouped in ribotype 55-S-6 had the highest extracellular protease activity, while those in ribotypes 50-S-8 and 72-S-3 had the highest extracellular lipase activities. We conclude that ribotyping provides a reliable method for differentiating Pseudomonas strains with dairy food spoilage potential.  相似文献   

18.
The intracellular protease extracted from the freeze-dried mycelia obtained after the growth of Mucor pusillus at 30°C in corn steep liquor medium was chromatographed on DEAE-A50. Some characteristics of the protease fractions obtained after ion-exchange chromatography were determined and compared with those of the extracellular proteases reported previously. The mycelia were found to contain two acid proteases and an alkaline protease. The ratio of milk clotting to protease activity of one acid protease was greater than that of the other. The electrophoretic pattern of the alkaline protease fraction suggested that it was not a single species, but a mixture of proteolytic enzymes.  相似文献   

19.
DNA methylation is an important epigenetic mechanism affecting genome structure, gene regulation, and the silencing of transposable elements. Cell- and tissue-specific methylation patterns are critical for differentiation and development in eukaryotes. Dynamic spatiotemporal methylation data in these cells or tissues is, therefore, of great interest. However, the construction of bisulfite sequencing libraries can be challenging if the starting material is limited or the genome size is small, such as in Arabidopsis. Here, we describe detailed methods for the purification of Arabidopsis embryos at all stages, and the construction of comprehensive bisulfite libraries from small quantities of input. We constructed bisulfite libraries by releasing embryos from intact seeds, using a different approach for each developmental stage, and manually picking single-embryo with microcapillaries. From these libraries, reliable Arabidopsis methylome data were collected allowing, on average, 11-fold coverage of the genome using as few as five globular, heart, and torpedo embryos as raw input material without the need for DNA purification step. On the other hand, purified DNA from as few as eight bending torpedo embryos or a single mature embryo is sufficient for library construction when RNase A is treated before DNA extraction. This method can be broadly applied to cells from different tissues or cells from other model organisms. Methylome construction can be achieved using a minimal amount of input material using our method; thereby, it has the potential to increase our understanding of dynamic spatiotemporal methylation patterns in model organisms.  相似文献   

20.
Embryos of pea (Pisum sativum L. cv Sol) deprived of cotyledons were cultured for 3 days in medium with or without sucrose. Respiratory activity of embryos (intact) as well as the ability to oxidize glutamate by mitochondria isolated from embryos were studied. Respiration of intact embryos grown in sucrose supplemented medium was more intensive than in the starved ones. Transfer of the starved embryos to the sucrose-containing medium induced the increase in the intensity of O2 consumption. Mitochondria isolated from both starved and control embryos exhibited respiratory control. Mitochondria isolated from embryos cultured in the absence of sucrose showed higher (about 60 %) ability to oxidize glutamate and α-ketoglutarate than mitochondria from embryos grown in sucrose containing medium. The absence of sucrose in the medium led to a rapid increase in the specific activity of glutamate dehydrogenase (NADH-GDH and NAD-GDH) and it was accompanied by changes in izoenzymatic pattern of enzyme. These results suggest that in the conditions of sucrose starvation glutamate dehydrogenase may be responsible for the increase of glutamate oxidation by mitochondria of pea embryos. Electrophoretic separation of glutamate dehydrogenase isolated from embryos cultured in medium without sucrose showed the presence of ca. 17 isoenzymes while in non-starved embryos only 7 isoenzymes were identified. However, the addition of sucrose to starved embryos after 24 hours of cultivation led to a decrease in glutamate dehydrogenase activity (up to 40 %) but it did not cause the changes in isoenzymatic pattern. These results suggest that in the conditions of sucrose starvation glutamate dehydrogenase maybe responsible for the increase of glutamate oxidation by mitochondria of pea embryos. The posibility of glutamate dehydrogenase regulation by sucrose is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号