首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemopoietic stem and progenitor cells from different sources differ in radiosensitivity. Recently, we have demonstrated that the multinucleated cell responsible for bone resorption and marrow cavity formation, the osteoclast, is in fact of hemopoietic lineage. In this investigation we have studied the radiosensitivity of osteoclast formation from two different hemopoietic tissues: fetal liver and adult bone marrow. Development of osteoclasts from hemopoietic progenitors was induced by coculture of hemopoietic cell populations with fetal mouse long bones depleted of their own osteoclast precursor pool. During culture, osteoclasts developed from the exogenous cell population and invaded the calcified hypertrophic cartilage of the long bone model, thereby giving rise to the formation of a primitive marrow cavity. To analyze the radiosensitivity of osteoclast formation, either the hemopoietic cells or the bone rudiments were irradiated before coculture. Fetal liver cells were found to be less radiosensitive than bone marrow cells. The D0, Dq values and extrapolation numbers were 1.69 Gy, 5.30 Gy, and 24.40 for fetal liver cells and 1.01 Gy, 1.85 Gy, and 6.02 for bone marrow cells. Irradiation of the (pre)osteoclast-free long bone rudiments instead of the hemopoietic sources resulted in a significant inhibition of osteoclast formation at doses of 4 Gy or more. This indirect effect appeared to be more prominent in the cocultures with fetal than with adult hemopoietic cells. Furthermore, radiation doses of 8.0-10.0 Gy indirectly affected the appearance of other cell types (e.g., granulocytes) in the newly formed but underdeveloped marrow cavity. The results indicate that osteoclast progenitors from different hemopoietic sources exhibit a distinct sensitivity to ionizing irradiation. Radiation injury to long bone rudiments disturbs the osteoclast-forming capacity as well as the hemopoietic microenvironment.  相似文献   

2.
《The Journal of cell biology》1984,99(6):1901-1906
In a previous study, using co-cultures of embryonic bone rudiments stripped of periosteum, and mononuclear phagocytes of various sources, we found that multinucleated mineral-resorbing osteoclasts developed in vitro from radiosensitive mouse bone marrow mononuclear phagocytes (BMMP). (Burger, E. H., J. W. M. van der Meer, J. S. van de Gevel, C. W. Thesingh, and R. van Furth, 1982, J. Exp. Med. 156:1604-1614). In the present study, this co-culture technique was used to analyze the influence of bone-forming cells on osteoclast formation and bone resorption by BMMP or peritoneal exudate cells (PEC). BMMP or PEC were co-cultured with liver or dead bone, i.e., in the presence or absence of liver bone-forming cells. Mineral resorption and osteoclast formation were monitored via 45Ca release from prelabeled live or dead bone followed by histology. Osteoclasts developed from precultured BMMP as indicated by [3H]thymidine labeling, but only in live and not in dead bone. They formed readily from BMMP but only erratically, and after a longer culture period, from PEC. Macrophages from BMMP and PEC invaded live and dead bone rudiments but did not resorb the intact mineralized matrix. In contrast, ground bone powder was resorbed avidly by both cell populations, without formation of osteoclasts. We conclude that live bone-forming cells are required for osteoclast formation from progenitors. Live bone is only resorbed by osteoclasts, and not by macrophages. Osteoclast progenitors are abundant in cultures of BMMP but scarce in PEC, which makes a direct descendance of osteoclasts from mature macrophages unlikely.  相似文献   

3.
4.
The relationship between oxidative stress and bone mineral density or osteoporosis has recently been reported. As bone loss occurring in osteoporosis and inflammatory diseases is primarily due to increases in osteoclast number, reactive oxygen species (ROS) may be relevant to osteoclast differentiation, which requires receptor activator of nuclear factor-kappaB ligand (RANKL). Tumor necrosis factor-alpha (TNF-alpha) frequently present in inflammatory conditions has a profound synergy with RANKL in osteoclastogenesis. In this study, we investigated the effects of alpha-lipoic acid (alpha-LA), a strong antioxidant clinically used for some time, on osteoclast differentiation and bone resorption. At concentrations showing no growth inhibition, alpha-LA potently suppressed osteoclastogenesis from bone marrow-derived precursor cells driven either by a high-dose RANKL alone or by a low-dose RANKL plus TNF-alpha (RANKL/TNF-alpha). alpha-LA abolished ROS elevation by RANKL or RANKL/TNF-alpha and inhibited NF-kappaB activation in osteoclast precursor cells. Specifically, alpha-LA reduced DNA binding of NF-kappaB but did not inhibit IKK activation. Furthermore, alpha-LA greatly suppressed in vivo bone loss induced by RANKL or TNF-alpha in a calvarial remodeling model. Therefore, our data provide evidence that ROS plays an important role in osteoclast differentiation through NF-kappaB regulation and the antioxidant alpha-lipoic acid has a therapeutic potential for bone erosive diseases.  相似文献   

5.
The complex embryonic phenotype of the six neurogenic mutations Notch, mastermind, big brain, Delta, Enhancer of split and neuralized was analyzed by using different antibodies and PlacZ markers, which allowed us to label most of the known embryonic tissues. Our results demonstrate that all of the neurogenic mutants show abnormalities in many different organs derived from all three germ layers. Defects caused by the neurogenic mutations in ectodermally derived tissues fell into two categories. First, all cell types that delaminate from the ectoderm (neuroblasts, sensory neurons, peripheral glia cells and oenocytes) are increased in number. Secondly, ectodermal tissues that in the wild type form epithelial structures lose their epithelial phenotype and dissociate (optic lobe, stomatogastric nervous system) or show significant differentiative abnormalities (trachea, Malpighian tubules and salivary gland). Abnormalities in tissues derived from the mesoderm were observed in all six neurogenic mutations. Most importantly, somatic myoblasts do not fuse and/or form an aberrant muscle pattern. Cardioblasts (which form the embryonic heart) are increased in number and show differentiative abnormalities; other mesodermal cell types (fat body, pericardial cells) are significantly decreased. The development of the endoderm (midgut rudiments) is disrupted in most of the neurogenic mutations (Notch, Delta, Enhancer of split and neuralized) during at least two stages. Defects occur as early as during gastrulation when the invaginating midgut rudiments prematurely lose their epithelial characteristics. Later, the transition of the midgut rudiments to form the midgut epithelium does not occur. In addition, the number of adult midgut precursor cells that segregate from the midgut rudiments is strongly increased. We propose that, at least in the ectodermally and endodermally derived tissues, neurogenic gene function is primarily involved in interactions among cells that need to acquire or to maintain an epithelial phenotype.  相似文献   

6.
Summary The present investigations have been concerned with factors which determine and influence the localization and development of hemopoietic bone marrow in the embryo mouse and the adult. These studies, which have employed organ cultures and the transplantation of mouse embryo femur and tail rudiments, indicate that the surrounding mesenchyme is required for the normal development of the cartilage rudiment and its ossification, and for the formation and colonization of the marrow cavity. It was suggested that hemopoiesis results from the colonization of the “prepared” marrow cavity by stem cells arising from sources external to the rudiment. The addition of erythropoietin and L-thyroxine produced distinct erythropoietic differentiation in the normally myelocytic embryonic marrow cavity. The significance of the microenvironment present in developing bone rudiments and the initiation of hemopoiesis in stem cells was discussed. A hypothesis was developed to explain marrow localization in adults based on the colonization of bone rudiments which are developing their marrow sites at a time when the blood contains large numbers of colony-forming units.  相似文献   

7.
MicroRNA-223 is a key factor in osteoclast differentiation   总被引:3,自引:0,他引:3  
MicroRNAs (miRNAs) are a class of noncording RNAs that control gene expression by translational inhibition and messenger RNAs (mRNAs) degradation in plants and animals. Although miRNAs have been implicated in developmental and homeostatic events of vertebrates and invertebrates, the role of miRNAs in bone metabolism has not been explored. Here, we show that microRNA-223 (miR-223) is expressed in RAW264.7 cells, mouse osteoclast precursor cell lines, and plays a critical role in osteoclast differentiation. We constructed miR-223 short interfering RNA (siRNA) or precursor miR-223 (pre-miR-223) overexpression retroviral vectors, and established miR-223 knockdown by siRNA or pre-miR-223 overexpression in stably infected RAW264.7 cells. Tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells were observed in miR-223 knockdown cells as well as control cells. In contrast, pre-miR-223 overexpression completely blocked TRAP-positive multinucleated cell formation compared with control cells. Apoptotic cells were not observed in this study. Our results indicate that miR-223 plays an essential role during osteoclast differentiation, and miR-223 might be a viable therapeutic target for a range of bone metabolic disorders with excess osteoclast activity.  相似文献   

8.
Stimulation by toll-like receptors inhibits osteoclast differentiation   总被引:12,自引:0,他引:12  
Osteoclasts, the cells capable of resorbing bone, are derived from hemopoietic precursor cells of monocyte-macrophage lineage. The same precursor cells can also give rise to macrophages and dendritic cells, which are essential for proper immune responses to various pathogens. Immune responses to microbial pathogens are often triggered because various microbial components induce the maturation and activation of immunoregulatory cells such as macrophages or dendritic cells by stimulating Toll-like receptors (TLRs). Since osteoclasts arise from the same precursors as macrophages, we tested whether TLRs play any role during osteoclast differentiation. We showed here that osteoclast precursors prepared from mouse bone marrow cells expressed all known murine TLRs (TLR1-TLR9). Moreover, various TLR ligands (e.g., peptidoglycan, poly(I:C) dsRNA, LPS, and CpG motif of unmethylated DNA, which act as ligands for TLR2, 3, 4, and 9, respectively) induced NF-kappa B activation and up-regulated TNF-alpha production in osteoclast precursor cells. Unexpectedly, however, TLR stimulation of osteoclast precursors by these microbial products strongly inhibited their differentiation into multinucleated, mature osteoclasts induced by TNF-related activation-induced cytokine. Rather, TLR stimulation maintained the phagocytic activity of osteoclast precursors in the presence of osteoclastogenic stimuli M-CSF and TNF-related activation-induced cytokine. Taken together, these results suggest that TLR stimulation of osteoclast precursors inhibits their differentiation into noninflammatory mature osteoclasts during microbial infection. This process favors immune responses and may be critical to prevent pathogenic effects of microbial invasion on bone.  相似文献   

9.
10.
It is well known that thyroid hormone excess causes bone loss. However, the precise mechanism of bone loss by thyroid hormone still remains unclear. When T(3) was added to unfractionated bone cells after degeneration of pre-existent osteoclasts, T(3) (1 pM-100 nM) dose-dependently stimulated osteoclast-like cell formation, irrespective of the presence of indomethacin and IL-6 Ab. T(3) increased the expression of osteoprotegerin (OPG) messenger RNA (mRNA), but not of receptor activator of nuclear factor kappaB ligand (RANKL) in unfractionated bone cells, suggesting that the stimulatory effect of T(3) on osteoclast formation was not mediated by the RANKL/OPG system. We next examined the direct effect of T(3) on osteoclast precursors in the absence of osteoblasts, using hemopoietic blast cells derived from spleen cells. T(3) (1 pM-100 nM) dose-dependently stimulated osteoclast-like cell formation from osteoclast precursors. OPG did not inhibit T(3)-induced osteoclast formation from osteoclast precursor cells. The polymerase chain reaction (PCR) product corresponding in size to the mouse T(3) receptor alpha1 cDNA was detected in osteoclast precursors from mouse hemopoietic blast cells as well as mouse heart and mouse osteoblastic cell line MC3T3-E1 cells, suggesting that T(3) directly stimulated osteoclast-like cell formation from osteoclast precursors in the absence of osteoblasts. Further, T(3) increased the expression of c-Fos mRNA at 15 min and 24 h and Fra-1 mRNA at 2 and 6 h in osteoclast precursors. Consistent with the increased expression of c-Fos mRNA observed by RT-PCR, the activation of c-Fos occurred in osteoclast precursor cells stimulated by T(3), while the activation of neither NF-kappaB nor MAPKs was observed by immunoblot analysis. Antisense oligodeoxynucleotides (as-ODN) complementary to c-Fos mRNA at 1 microM significantly inhibited T(3)-induced osteoclast-like cell formation from osteoclast precursors in the absence of stromal cells while sense-ODN did not affect T(3)-induced osteoclast-like cell formation. These results indicate that T(3) directly stimulates osteoclast differentiation at least in part by up-regulation of c-fos protein in osteoclast precursor cells.  相似文献   

11.
The presence of osteoclast progenitor cells in embryonic, fetal, young growing, and adult murine tissues and organs was investigated in a coculture system with fetal metatarsal bones stripped of periosteum and not yet invaded by osteoclasts. Osteoclasts were found to originate from the early yolk sac and from every tissue tested in the fetus and young mouse. In the adult mouse they were formed only from tissues with a large mononuclear phagocyte population. No osteoclasts could be generated from the young embryo proper, prior to establishment of the vascular connection with the yolk sac. Progenitors of osteoclasts or their stem cells therefore do not develop from undifferentiated mesenchyme outside the yolk sac, but are distributed from the yolk sac to embryonic tissues and hematopoietic organs through the vascular circulation. The embryonic distribution of osteoclast progenitors coincides with the distribution of immature macrophages. Furthermore, they are present before the formation of monocytes in the fetus. The results also indicate that osteoclast precursor cells are not identical with mature, differentiated macrophages, but are cells with little capacity to phagocytose and therefore are, at the most immature progenitors of macrophages or cells of an early diverging lineage. In view of these results the derivation of osteoclasts is discussed.  相似文献   

12.
Osteoclasts are derived from hemopoietic stem cells and play critical roles in bone resorption and remodeling. Multinucleated osteoclasts are attached tightly to bone matrix, whereas precursor cells with the potential to differentiate into osteoclasts in culture are widely distributed. In this study, we assessed the characteristics of osteoclast precursors in bone marrow (BM) and in extramedullary organs as indicated by their responsiveness to ligands for Toll-like receptors (TLRs) and to TNF-alpha. Development of osteoclasts from precursor cells in the BM was inhibited by CpG oligonucleotides, a ligand for TLR9, but not by LPS, a ligand for TLR4. BM osteoclasts were induced by TNF-alpha as well as receptor activator of NF-kappaB ligand in the presence of M-CSF. Splenic osteoclast precursors, even in osteoclast-deficient osteopetrotic mice, differentiated into mature osteoclasts following exposure to TNF-alpha or receptor activator of NF-kappaB ligand. However, splenic osteoclastogenesis was inhibited by both LPS and CpG. Osteoclastogenesis from peritoneal precursors was inhibited by not only these TLR ligands but also TNF-alpha. The effects of peptidoglycan, a ligand for TLR2, were similar to those of LPS. BM cells precultured with M-CSF were characterized with intermediate characteristics between those of splenic and peritoneal cavity precursors. Taken together, these findings demonstrate that osteoclast precursors are not identical in the tissues examined. To address the question of why mature osteoclasts occur only in association with bone, we may characterize not only the microenvironment for osteoclastogenesis, but also the osteoclast precursor itself in intramedullary and extramedullary tissues.  相似文献   

13.
Prothrombin (PT) is an RGD-containing bone-residing precursor to the serine protease thrombin (TH), which acts as an agonist for a variety of cellular responses in osteoblasts and osteoclasts. We show here that PT, TH, osteopontin (OPN) and fibronectin (FN) promoted adhesion of isolated neonatal rat long bone osteoclasts. However, the cells that adhered to PT and TH were smaller in size, rounded and contained 3-4 nuclei, in comparison to the cells adhering to OPN and FN, which were larger with extended cytoplasmic processes and 6-7 nuclei. Attachment of the larger osteoclasts to OPN and FN was inhibited by antibodies towards beta 3 and beta 1 integrin subunits, respectively. Whereas an RGD-containing peptide inhibited adhesion of the smaller osteoclasts to PT and TH, this was not seen with the beta 3 or beta 1 antibodies. In contrast, the beta 1 antibody augmented osteoclast adhesion to PT and TH in an RGD-dependent manner. Small osteoclasts were less efficient in resorbing mineralized bovine bone slices, as well as expressed lower mRNA levels of MMP-9 and the cathepsins K and L compared to large osteoclasts. The small osteoclast adhering to PT and TH may represent either an immature, less functional precursor to the large osteoclast or alternatively constitute a distinct osteoclast population with a specific role in bone.  相似文献   

14.
Pathological bone destruction (osteolysis) is a hallmark of many bone diseases including tumor metastasis to bone, locally osteolytic giant cell tumor (GCT) of bone, and Paget's disease. Paclitaxel is frequently prescribed in the treatment of several malignant tumors where it has been shown to exert beneficial effects on bone lesions. However, the mechanism(s) through which paclitaxel regulates osteoclast formation and function remain ill defined. In the present study, we demonstrate that paclitaxel dose-dependently inhibits receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis in both RAW264.7 cells and mouse bone marrow macrophage (BMM) systems. In addition, paclitaxel treatment reduces the bone resorptive activity of human osteoclasts derived from GCT of bone, and attenuates lipopolysaccharide (LPS)-induced osteolysis in a mouse calvarial model. Complementary cellular and biochemical analyses revealed that paclitaxel induces mitotic arrest of osteoclastic precursor cells. Furthermore, luciferase reporter gene assays and western blot analysis indicate that paclitaxel modulates key RANKL-induced activation pathways that are essential to osteoclast formation including NF-κB and ERK. Collectively, our findings demonstrate a role for paclitaxel in the regulation of osteoclast formation and function and uncover potential mechanism(s) through which paclitaxel alleviates pathological osteolysis.  相似文献   

15.
The receptor activator of NF-kappaB ligand (RANKL) induces osteoclast differentiation from bone marrow cells in the presence of macrophage colony-stimulating factor. We found that treatment of bone marrow cells with SB203580 inhibited osteoclast differentiation via inhibition of the RANKL-mediated signaling pathway. To elucidate the role of p38 mitogen-activated protein (MAP) kinase pathway in osteoclastogenesis, we employed RAW264 cells which could differentiate into osteoclast-like cells following treatment with RANKL. In a dose-dependent manner, SB203580 but not PD98059, inhibited RANKL-induced differentiation. Among three MAP kinase families tested, this inhibition profile coincided only with the activation of p38 MAP kinase. Expression in RAW264 cells of the dominant negative form of either p38alpha MAP kinase or MAP kinase kinase (MKK) 6 significantly inhibited RANKL-induced differentiation of the cells. These results indicate that activation of the p38 MAP kinase pathway plays an important role in RANKL-induced osteoclast differentiation of precursor bone marrow cells.  相似文献   

16.
Although high inorganic phosphate (Pi) concentration in culture media directly inhibits generation of new osteoclasts and also inhibits bone resorption by mature osteoclasts, its precise mechanism and the physiological role have not been elucidated. The present study was performed to investigate these issues. Increase in extracellular Pi concentration ([Pi](e)) (2.5-4 mM) concentration dependently inhibited 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] or parathyroid hormone (PTH)-(1-34)-induced osteoclast-like cell formation from unfractionated bone cells in the presence of stromal cells. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited 1,25(OH)(2)D(3)-, PTH-(1-34)-, or receptor activator of NF-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF)-induced osteoclast-like cell formation from hemopoietic blast cells in the absence of stromal cells. Increase in [Pi](e) (2.5-4 mM) dose dependently stimulated the expression of osteoprotegerin (OPG) mRNA and increased the expression of OPG mRNA suppressed by PTH-(1-34) or 1,25(OH)(2)D(3) in unfractionated bone cells, while it did not affect RANKL mRNA. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited the bone-resorbing activity of isolated rabbit osteoclasts. Increase in [Pi](e) (4 mM) induced the apoptosis of isolated rabbit osteoclasts while it did not affect the apoptosis of osteoclast precursor cells and mouse macrophage-like cell line C7 cells that can differentiate into osteoclasts in the presence of RANKL and M-CSF. These results indicate that increase in [Pi](e) inhibits osteoclast differentiation both by up-regulating OPG expression and by direct action on osteoclast precursor cells. It is also indicated that increase in [Pi](e) inhibits osteoclastic activity at least in part by the direct induction of apoptosis of osteoclasts.  相似文献   

17.
Osteoclasts are hematopoietic cells essential for bone resorption. To understand the process of osteoclastogenesis, we have developed a culture system that employs a stromal cell line, in which differentiation of osteoclasts from single embryonic stem (ES) cells occurs. This culture, which did not require any cell passaging or other manipulations, enabled us to investigate the temporal and spatial localization of the osteoclast lineage in the colonies formed from ES cells. Cells expressing tartrate-resistant acid phosphatase, a specific marker of the osteoclast lineage, were first detected on day 8, and subsequently became localized at the periphery of colonies and matured into multinucleated cells to resorb bone. Addition of macrophage colony-stimulating factor and osteoprotegerin-ligand, which are produced by stromal cells, promoted osteoclastogenesis in whole colonies, indicating that the location and maintenance of mature osteoclasts as well as the growth and differentiation of osteoclast precursors are regulated by these two factors.  相似文献   

18.
19.
Medium conditioned by incubation with embryonic chick calvarial bones, which contain osteoblasts but not osteoclasts, stimulated new osteoclast formation in foetal long bone cultures and in adult bone marrow cultures formation of tartrate-resistant acid phosphatase (TRAP) positive cells was greatly stimulated. We have termed the factor responsible for this activity osteoclast growth/inducing factor (OGF). OGF was soluble, heat-stable and of size greater than 10kda. OGF activity was present also in mouse bone conditioned medium and in extracts of demineralized cortical diaphyseal bone of five-week-old chickens. OGF appeared to differ from the osteoblast-derived bone-resorbing factors previously observed as well as from macrophage colony stimulating factor (CSF-1). It is therefore probable that different locally secreted factors independently regulate the formation of osteoclasts and their activity.  相似文献   

20.
Osteoclasts, multinucleated cells of myeloid-monocytic origin, are responsible for bone resorption, which is crucial for maintenance of bone homeostasis in concert with bone-forming osteoblasts of nonhematopoietic, mesenchymal origin. Receptor activator of NF-kappaB ligand (RANKL) and M-CSF, expressed on the surface of and secreted by osteoblasts, respectively, are essential factors that facilitate osteoclast formation. In contrast to the activation processes for osteoclast formation, inhibitory mechanisms for it are poorly understood. Herein we demonstrate that inhibitory Ig-like receptors recruiting Src homology 2 domain-containing tyrosine phosphatase 1 (SHP-1) are expressed on osteoclast precursor cells like other myeloid cells, and that they play a regulatory role in the development of osteoclasts. We detected cell-surface expression of paired Ig-like receptor (PIR)-B and four isoforms of leukocyte Ig-like receptor (LILR)B on cultured osteoclast precursor cells of mouse and human origin, respectively, and showed that all of these ITIM-harboring inhibitory receptors constitutively recruit SHP-1 in the presence of RANKL and M-CSF, and that some of them can suppress osteoclast development in vitro. Fluorescence energy transfer analyses have suggested that the constitutive binding of either murine PIR-B or its human ortholog LILRB1 to MHC class I molecules on the same cell surface comprises one of the mechanisms for developmental regulation. These results constitute the first evidence of the regulation of osteoclast formation by cell-surface, ITIM-harboring Ig-like receptors. Modulation of these regulatory receptors may be a novel way to control various skeletal system disorders and inflammatory arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号