首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
以O型口蹄疫病毒为研究对象,经过RTPCP扩增得到非结构蛋白3ABC基因,克隆到转移载体pFastbacHT,将其转入含穿梭载体Bacmid的DH10Bac,与Bacmid发生位点特异性转座作用,得到3ABC的重组穿梭载体Bacmid3ABC,再将其转染昆虫细胞HiFive。PCR鉴定证实3ABC基因正确地插入到病毒基因组的多角体蛋白基因启动子下游,经过SDSPAGE和Westernblot检测,3ABC基因在昆虫细胞中表达了大小约为50kDa的蛋白条带,3ABC基因在BactoBac系统中的成功表达为建立以基因工程产品为抗原、鉴别诊断自然感染和免疫动物的方法提供了技术条件。  相似文献   

3.
目的:构建猪链球菌2型(Streptococcus suis type 2)强毒株05ZYH3389K毒力岛上的ABC转运蛋白gene0910敲除突变体,并初步分析其活性,为进一步研究猪链球菌假想毒力因子在致病中的作用提供实验基础。方法:以猪链球菌2型05ZYH33基因组为模板,扩增gene0910两侧各约500bp左右的片段为上下游同源臂,以pSET1质粒为模板,扩增氯霉素抗性基因Cm为中间片段,采用重叠PCR方法搭建三个片段,并克隆到自杀载体pSET4S上,构建基因敲除的载体。电转化05ZYH33感受态细胞,经30℃双交换和40℃质粒丢失,最后点板法筛选出基因敲除突变体△0910。对突变株和野生株的生物学活性及小鼠的致病性进行了初步比较。结果:PCR分析和测序结果均显示gene0910完全被氯霉素抗性基因Cm所替代,基因敲除突变体构建成功。结论:突变株的生物学活性和对小鼠的致病性与野生株相比差异不显著。  相似文献   

4.
香蕉枯萎病菌4号生理小种致病相关基因foABC1的分离   总被引:2,自引:0,他引:2  
通过对香蕉枯萎病菌4号小种致病突变体B1233的进一步研究,分离了被突变的致病相关基因foABC1,同源性分析及保守结构预测该基因编码一类ABC转运蛋白,其功能可能同稻瘟病菌的ABC转运蛋白一样,负责真菌毒素的泵出,或是像其他真菌的ABC转运蛋白,在病原菌侵染寄主植物时能忍耐植物因防卫反应所释放的植保素或抗毒素类物质。  相似文献   

5.
6.
The human ATP-binding cassette (ABC) transporters comprise a large family of membrane transport proteins and play a vital role in many cellular processes. The genes provide functions as diverse as peptide transport, cholesterol and sterol transport, bile acid, retinoid, and iron transport. In addition some ABC genes play a role as regulatory elements. Many ABC genes play a role in human genetic diseases, and several are critical drug transport proteins overexpressed in drug resistant cells. Analysis of the gene products allows the genes to be grouped into seven different subfamilies.  相似文献   

7.
腺苷三磷酸结合盒转运蛋白(ATP-binding cassette transporter,ABC transporter)基因家族在原核生物和真核生物中广泛存在,该家族蛋白能够利用ATP裂解产生的能量将多种底物转运到膜上,参与多种生物过程,如营养摄入、细胞解毒、脂质稳态、信号转导、病毒防御以及抗原呈递等。目前,鱼类中,只在斑马鱼、斑点叉尾鮰和鲤鱼等少数鱼类中对该基因家族进行了系统的研究,关于金鱼ABC转运蛋白基因家族的详细分析,未见报道。本研究中,我们利用三代结合二代测序技术构建的金鱼转录组参考基因集数据,鉴定出55个ABC转运蛋白基因,通过系统进化分析将它们分为8个亚家族(A^H)。即金鱼ABC转运蛋白基因是由10个ABCA、14个ABCB、13个ABCC、5个ABCD、1个ABCE、4个ABCF、7个ABCG和1个ABCH组成。同时,我们将金鱼与斑马鱼、斑点叉尾鮰和鲤鱼等物种ABC转运蛋白基因家族成员的数目进行比较分析,推测硬骨鱼类特异的第3次全基因复制(3R-WGD)和谱系特异的第4次全基因组复制(4R-WGD)对金鱼该基因家族成员数目的影响。本研究结果为金鱼ABC转运蛋白基因功能的研究提供了理论依据。  相似文献   

8.
假单胞菌M18株pltZ基因转录阻抑藤黄绿菌素ABC转运系统   总被引:1,自引:0,他引:1  
假单胞菌(Pseudomonassp .)M18株的藤黄绿菌素(Pyoluteorin ,Plt )生物合成基因簇下游存在一个Plt生物合成负调控基因pltZ和一个负责Plt分泌及自身抗性的ABC(ATP_bindingcassette)转运系统基因簇。利用启动子探针载体pME6 0 15和pME6 5 2 2分别构建ABC转运基因pltH与lacZ的翻译和转录融合表达质粒pHZLF和pHZCF ,分别引入野生型假单胞菌M18株和pltZ突变菌株M18Z。半乳糖苷酶活性的测定结果表明:在pltZ突变株M18Z中,pltH’-‘lacZ翻译融合表达水平约比野生型提高3 7~8 4倍,pltH’‘lacZ转录融合表达水平显著提高了2 8~7 4倍,表明pltZ能在转录水平上阻抑PltABC转运系统的表达,pltZ很可能通过阻抑PltABC转运系统的表达,间接地负调控Plt的生物合成  相似文献   

9.
ABC细胞膜转运蛋白是一个能转运多种底物的蛋白质家族,其在宿主对异物的防御机制和肿瘤细胞对抗癌药物的耐药性中发挥重要作用。ABC转运蛋白能将已进人细胞的外源性物质从胞内泵出胞外,是造成肿瘤细胞多药耐药的主要原因,其基因表达水平与细胞内药物浓度和耐药程度密切相关。近年来,肿瘤细胞多药耐药性研究炙手可热。我们简要综述ABC细胞膜转运蛋白的特点、分布、表达及其介导的细胞多药耐药方面的研究进展。  相似文献   

10.
【目的】slnTI和slnTII是盐霉素生物合成基因簇中可能的两个转运蛋白基因,根据生物信息学的分析推测它们属于ABC转运蛋白家族。其中,slnTI编码ABC转运蛋白的ATP结合亚基,slnTII编码ABC转运蛋白的跨膜亚基,推测它们可能与盐霉素的外排有关。通过slnTI和slnTII的基因中断与超量表达研究它们对盐霉素生物合成产量和抗性的影响。【方法】利用REDIRECT?技术,在盐霉素产生菌白色链霉菌XM211中分别构建了slnTI和slnTII的基因置换突变株LJ01和LJ02,并通过基因回补对突变株进行了验证。利用整合型表达载体pPM927在白色链霉菌XM211中对slnTI和slnTII进行串联超量表达。将slnTI和slnTII导入变铅青链霉菌1326中进行异源表达,通过液体培养实验检测衍生菌株对盐霉素的抗性。【结果】相比出发菌株XM211,突变株LJ01中盐霉素的产量下降了27.2%,LJ02下降了45.4%,LJ01和LJ02中结构基因slnA3和调控基因slnR的转录水平都有明显降低。超量表达菌株LJ03中盐霉素的产量提高了14.6%,转录结果显示LJ03中不仅slnTI和slnTII自身转录水平有大幅提高,而且slnA3和slnR转录水平也显著升高。抗性检测结果表明,异源表达菌株变铅青链霉菌LJ04对盐霉素的抗性水平略有提高。【结论】slnTI和slnTII是与盐霉素生物合成和外排有关的ABC转运蛋白基因,但并不是白色链霉菌XM211对盐霉素的主要抗性基因。  相似文献   

11.
Peroxisomal ABC transporters encoded by the ABCD genes are thought to participate in the import of specific fatty acids in the peroxisomal matrix. ABCD1 deficiency is associated with X-linked adrenoleukodystrophy (X-ALD), the most frequent peroxisomal disorder which is characterized by the accumulation of saturated very-long-chain fatty acids (VLCFA). ABCD2 (the closest homolog of ABCD1) and ABCD3 have been shown to have partial functional redundancy with ABCD1; only when overexpressed, they can compensate for VLCFA accumulation. Other lipids, for instance polyunsaturated fatty acids (PUFA), should be possible candidate substrates for the ABCD2 and ABCD3 gene products, ALDRP and PMP70 respectively. Moreover, PUFA, which are known regulators of gene expression, could therefore represent potent inducers of the ABCD genes. To test this hypothesis, littermates of n-3-deficient rats were subjected to an n-3-deficient diet or equilibrated diets containing ALA (alpha-linolenic acid, 18:3n-3) as unique source of n-3 fatty acids or ALA plus DHA (docosahexaenoic acid, 22:6n-3) at two different doses. We analyzed the expression of peroxisomal ABC transporters and of the peroxisomal acyl-CoA oxidase gene 1 (Acox1) in adrenals, brain and liver. Whatever the diet, we did not observe any difference in gene expression in adrenals and brain. However, the hepatic expression level of Abcd2 and Abcd3 genes was found to be significantly higher in the n-3-deficient rats than in the rats fed the ALA diet or the DHA supplemented diets. This was accompanied by important changes in hepatic fatty acid composition. In summary, the hepatic expression of Abcd2 and Abcd3 but not of Abcd1 and Abcd4 appears to be highly sensitive towards dietary PUFA. This difference could be linked to the substrate specificity of the peroxisomal ABC transporters and a specific involvement of Abcd2 and Abcd3 in PUFA metabolism.  相似文献   

12.
The functional role of the ABC transporter PGP-2 from the nematode Caenorhabditis elegans has been studied by combining phenotype analyses of pgp-2 deletion mutants or pgp-2 RNAi treated worms with reporter gene studies using a pgp-2::GFP construct. pgp-2 mutants showed a strong reduction of lipid stores. In addition, we found that in the case of the pgp-2 mutant or after pgp-2 RNAi the worms were unable to perform pinocytosis and to acidify intestinal lysosomes. Especially under cholesterol-restricted conditions, the viability of the mutant was reduced. Surprisingly, the chemosensory AWA neurons in the head region were identified as expression sites by reporter gene studies. These neurons are known to be involved in attraction behaviour towards odorants associated with potential food bacteria. Our results imply that PGP-2 is involved in a signalling process that connects sensory inputs to intestinal functions, possibly by influencing acidification of intestinal lysosomes, which in turn may affect pinocytosis and lipid storage.  相似文献   

13.
The Bacillus subtilis yts, yxd and yvc gene clusters encode a putative ABC transporter and a functionally coupled two-component system. When tested for their sensitivity towards a series of antibiotics, null yts mutants were found to be sensitive to bacitracin. Real-time polymerase chain reaction (PCR) experiments demonstrated that the presence of bacitracin in the growth medium strongly stimulates the expression of the ytsCD genes encoding the ABC transporter and that this stimulation strictly depends on the YtsA response regulator. The ywoA gene encodes a protein known to confer some resistance to bacitracin on the bacterium. When it was mutated in a null yts background, the ywoA yts double mutant was found to be five times more sensitive than the yts one. We propose that (i) the YtsCD ABC transporter exports the bacitracin; (ii) YwoA, the protein that contains an acidPPc (PAP2 or PgpB) domain, is not part of an ABC transporter but competes with bacitracin for the dephosphorylation of the C55-isoprenyl pyrophosphate (IPP); (iii) the two resistance mechanisms are independent and complementary.  相似文献   

14.
ATP-binding cassette (ABC) transporters are membrane proteins responsible for cellular detoxification processes in plants and animals. Recent evidence shows that this class of transporters may also be involved in many other cellular processes. Because of their homology with human multidrug resistance-associated proteins (MRP), cystic fibrosis transmembrane conductance regulator (CFTR) and sulfonylurea receptor (SUR), some plant ABC transporters have been implicated in the regulation of ion channel activities. This paper describes an investigation of the AtMRP4 gene and its role in stomatal regulation. Reporter gene studies showed that AtMRP4 is highly expressed in stomata and that the protein is localized to the plasma membrane. Stomatal aperture in three independent atmrp4 mutant alleles was larger than in wild-type plants, both in the light and in the dark, resulting in increased water loss but no change in the photosynthetic rate. In baker's yeast, AtMRP4 shows ATP-dependent, vanadate-sensitive transport of methotrexate (MTX), an antifolate and a substrate of mammalian MRPs. Treatment with MTX reduced stomatal opening in wild-type plants, but had no effect in atmrp4 mutants. These results indicate the involvement of AtMRP4 in the complex regulation of stomatal aperture.  相似文献   

15.
Obligate plant-pathogenic fungi have proved extremely difficult to characterize with molecular genetics because they cannot be cultured away from host plants and only can be manipulated experimentally in limited circumstances. Previously, in order to characterize signal transduction processes during infection-related development of the powdery mildew fungus Blumeria graminis (syn. Erysiphe graminis) f. sp. hordei, we described a gene similar to the catalytic subunit of cyclic AMP-dependent protein kinase A (here renamed Bka1). Functional characterization of this gene has been achieved by expression in a deltacpkA mutant of the nonobligate pathogen Magnaporthe grisea. This nonpathogenic M. grisea deltacpkA mutant displays delayed and incomplete appressorium development, suggesting a role for PKA-c in the signal transduction processes that control the maturation of infection cells. Transformation of the deltacpkA mutant with the mildew Bka1 open reading frame, controlled by the M. grisea MPG1 promoter, restored pathogenicity and appressorium maturation kinetics. The results provide, to our knowledge, the first functional genetic analysis of pathogenicity in an obligate pathogen and highlight the remarkable conservation of signaling components regulating infection-related development in pathogenic fungi.  相似文献   

16.
Insertional mutagenesis is an effective way to study the infection mechanism of fungal pathogens. In an attempt to identify the genes involved in appressorium formation from Magnaporthe grisea, we carried out Agrobacterium tumefaciens mediated transformation (ATMT) of the fungus. Analysis of the region flanking the T-DNA integration site in one of the appressorium mutants showed insertion in a gene coding a 78 amino acid protein (MGA1), showing no significant homology to any of the known proteins. The mutant mga1 caused neither foliar nor root infection. Complementation of the mutated gene with the full length wild type gene restored appressorium formation as well as rice infection demonstrating the involvement of this gene in pathogenicity of M. grisea. In an indirect immunolocalisation assay, the MGA1 expression was seen predominantly in germ tube and appressoria. The mutant was impaired in glycogen and lipid mobilization required for appressorium formation. The glycerol content in the mycelia of the mutant under hyperosmotic stress conditions was less as compared to wild type and was thus unable to tolerate the hyperosmotic stress induced by sorbitol. We hypothesize that MGA1 plays a crucial role in signal transduction leading to the metabolism of glycogen and lipids, which is a part of appressorium differentiation process.  相似文献   

17.
18.
The Saccharomyces cerevisiae gene ABC1 was originally isolated as a multicopy suppressor of a yeast strain harboring a mutation in a cytochrome b translational activator (cbs2-223). Based on this identification, Abc1p was postulated to activate the bc1 complex and function as a chaperone of cytochrome b. ABC1 was subsequently identified as COQ8 and found to be necessary for yeast coenzyme Q synthesis. In this work we show that a segment of yeast genomic DNA containing ABC1/COQ8 and neighboring genes suppresses the respiratory and Q-deficient phenotypes of the coq6 mutant, coq6-1. COQ6 is essential for yeast coenzyme Q biosynthesis. We show that a tRNA(TRP) gene located downstream of ABC1/COQ8 mediates suppression of the cbs2-223 and coq6-1 mutations, and each is identified here as containing UGA nonsense codons. The inability of ABC1/COQ8 to suppress the cbs2-223 allele in multicopy indicates it may not be a chaperone as previously reported.  相似文献   

19.
10种ABC转运蛋白在鼻咽癌顺铂耐药细胞系中的表达   总被引:1,自引:0,他引:1  
为研究鼻咽癌细胞CNE2中顺铂耐药与10种ABC转运蛋白的关系,分别用顺铂、顺铂+5-氟脲嘧啶来诱导CNE2耐药,在脱药培养2个月后通过MTT法测定细胞的生长曲线及其与顺铂的量效关系和耐药指数,同时,通过荧光定量PCR法检测耐药细胞与敏感细胞中10种ABC转运蛋白mRNA表达的差异,并通过免疫细胞化学法验证.MTT法结果提示,成功诱导出两株分别对顺铂、顺铂+5-氟脲嘧啶耐药的细胞株(分别命名为CNE2/DDP、CNE2/DDP+5Fu),耐药指数分别为2.58和5.31,ABCC2在两株耐药细胞株中表达均上调,分别为2.50和4.08倍,免疫细胞化学法结果表明,ABCC2在两株耐药细胞中表达均增强,同时ABCC2还可在CNE2/DDP+5Fu细胞核中表达.上述结果表明ABCC2在CNE2细胞对顺铂的耐药性中可能发挥着重要的作用.  相似文献   

20.
Using primers derived from a region of the Candida albicans CDR1 (Candida drug resistance) gene that is conserved in other ABC (ATP-binding cassette) transporters, a DNA fragment from a previously unknown CDR gene was obtained by polymerase chain reaction (PCR). After screening a C. albicans genomic library with this fragment as a probe, the complete CDR4 gene was isolated and sequenced. CDR4 codes for a putative ABC transporter of 1490 amino acids with a high degree of homology to Cdr1p, Cdr2p and Cdr3p from C. albicans (62, 59 and 57% amino acid sequence identity, respectively). Cdr4p has a predicted structure typical for cluster I.1 of yeast ABC transporters, characterized by two homologous halves, each comprising an N-terminal hydrophilic domain with consensus sequences for ATP binding and a C-terminal hydrophobic domain with six transmembrane helices. In contrast to the CDR1/CDR2 genes, the genetic structure of the CDR4 gene was conserved in 59 C. albicans isolates from six different patients. Northern hybridization analysis showed that the CDR4 gene was expressed in most isolates, but no correlation between CDR4 mRNA levels and the degree of fluconazole resistance of the isolates was found. In addition, a C. albicans mutant in which both copies of the CDR4 gene were disrupted by insertional mutagenesis was not hypersusceptible to fluconazole as compared to the parent strain. Unlike CDR1 and CDR2, CDR4 does not, therefore, seem to be involved in fluconazole resistance in C. albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号