首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Materials as morphogenetic guides in tissue engineering   总被引:5,自引:0,他引:5  
Within native tissues cells are held within the extracellular matrix (ECM), which has a role in maintaining homeostasis, guiding development and directing regeneration. Efforts in tissue engineering have aimed to mimick the ECM to help guide morphogenesis and tissue repair. Studies have not only looked at ways to mimick the structure and characteristics of the ECM, but have also considered ways to reproduce its molecular properties including its bioadhesive character, proteolytic susceptibility and ability to bind growth factors.  相似文献   

2.
Integrins are cell surface receptors that connect extracellular matrix (ECM) components to the actin cytoskeleton and transmit chemical and mechanical signals into the cells through adhesion complexes. Integrin‐activated downstream pathways have been implicated in the regulation of various cellular functions, including proliferation, survival, migration, and differentiation. Integrin‐based attachment to the matrix plays a central role in development, tissue morphogenesis, adult tissue homeostasis, remodeling and repair, and disturbance of the ECM‐integrin‐cytoskeleton signaling axis often results in diseases and tissue dysfunction. Increasing amount of in vitro and in vivo evidences suggest that integrins are pivotal for proper development, function, and regeneration of skeletal tissues. In this paper, we will summarize and discuss the role of integrins in skeletogenesis and their influence on the physiology and pathophysiology of cartilage, bone, and tendon. Birth Defects Research (Part C) 102:13–36, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Despite much information on their catalytic properties and gene regulation, we actually know very little of what matrix metalloproteinases (MMPs) do in tissues. The catalytic activity of these enzymes has been implicated to function in normal lung biology by participating in branching morphogenesis, homeostasis, and repair, among other events. Overexpression of MMPs, however, has also been blamed for much of the tissue destruction associated with lung inflammation and disease. Beyond their role in the turnover and degradation of extracellular matrix proteins, MMPs also process, activate, and deactivate a variety of soluble factors, and seldom is it readily apparent by presence alone if a specific proteinase in an inflammatory setting is contributing to a reparative or disease process. An important goal of MMP research will be to identify the actual substrates upon which specific enzymes act. This information, in turn, will lead to a clearer understanding of how these extracellular proteinases function in lung development, repair, and disease.  相似文献   

4.
花背蟾蜍眼早期形态发生中其主要部分空间联系的研究   总被引:3,自引:0,他引:3  
王子仁  仝允栩 《动物学报》1990,36(3):231-235
本文用扫描电镜研究了花背蟾蜍眼早期形态发生中视泡和预定晶状体、晶状体和预定角膜上皮间的紧密接触,此后在接触处出现间隙,其中存在呈网状的原纤维(fibril),这些原纤维的数量随两侧相连组织的分化,表现出增多、减少和逐渐消失的规律性变化,据此推测其成分属细胞外基质,对促进相连组织的分化起重要作用。  相似文献   

5.
The skeleton is unique from all other tissues in the body because of its ability to mineralize. The incorporation of mineral into bones and teeth is essential to give them strength and structure for body support and function. For years, researchers have wondered how mineralized tissues form and repair. A major focus in this context has been on the role of the extracellular matrix, which harbors key regulators of the mineralization process. In this introductory minireview, we will review some key concepts of matrix biology as it related to mineralized tissues. Concurrently, we will highlight the subject of this special issue covering many aspects of mineralized tissues, including bones and teeth and their associated structures cartilage and tendon. Areas of emphasis are on the generation and analysis of new animal models with permutations of matrix components as well as the development of new approaches for tissue engineering for repair of damaged hard tissue. In assembling key topics on mineralized tissues written by leaders in our field, we hope the reader will get a broad view of the topic and all of its fascinating complexities.  相似文献   

6.
Homeostasis of the extracellular matrix (ECM) of tissues is regulated by controlling deposition and degradation of ECM proteins. The breakdown of ECM is essential in blastocyst implantation and embryonic development, tissue morphogenesis, menstrual shedding, bone formation, tissue resorption after delivery, and tumor growth and invasion. TGF-beta family members are one of the classes of proteins that actively participate in the homeostasis of ECM. Here, we report on the effect of lefty, a novel member of the TGF-beta family, on the homeostasis of extracellular matrix in a fibrosarcoma model. Fibroblastic cells forced to express lefty by retroviral transduction lost their ability to deposit collagen in vivo. This event was associated with down-regulation of the steady-state level of connective tissue growth factor that induces collagen type I mRNA. In addition, lefty transduction significantly decreased collagen type I mRNA expression and simultaneously increased collagenolytic, gelatinolytic, elastolytic, and caseinolytic activities in vivo by the transduced fibroblasts. These findings provide a new insight on the actions of lefty and suggest that this cytokine plays an active role in remodeling of the extracellular matrix in vivo.  相似文献   

7.
Epithelial tissues in various organ rudiments undergo extensive shape changes during their development. The processes of epithelial shape change are controlled by tissue interactions with the surrounding mesenchyme which is kept in direct contact with the epithelium. One of the organs which has been extensively studied is the mouse embryonic submandibular gland, whose epithelium shows the characteristic branching morphogenesis beginning with the formation of narrow and deep clefts as well as changes in tissue organization. Various molecules in the mesenchyme, including growth factors and extracellular matrix components, affect changes of epithelial shape and tissue organization. Also, mesenchymal tissue exhibits dynamic properties such as directional movements in groups and rearrangement of collagen fibers coupled with force-generation by mesenchymal cells. The epithelium, during early branching morphogenesis, makes a cell mass where cell-cell adhesion systems are less developed. Such properties of both the mesenchyme and epithelium are significant for considering how clefts, which first appear as unstable tiny indentations on epithelial surfaces, are formed and stabilized.  相似文献   

8.
The term connective tissue encompasses a diverse group of tissues that reside in different environments and must support a spectrum of mechanical functions. Although the extracellular matrix of these tissues is well described, the cellular architecture of these tissues and its relationship to tissue function has only recently become the focus of study. It now appears that tensile-bearing dense connective tissues may be a specific class of connective tissues that display a common cellular organization characterized by fusiform cells with cytoplasmic projections and gap junctions. These cells with their cellular projections are organised into a complex 3-dimensional network leading to a physically, chemically and electrically connected cellular matrix. The cellular matrix may play essential roles in extracellular matrix formation, maintenance and remodelling, mechanotransduction and during injury and healing. Thus, it is likely that it is the interaction of both the extracellular matrix and cellular matrix that provides the basis for tissue function. Restoration of both these matrices, as well as their interaction must be the goal of strategies to repair these connective tissues damaged by either injury or disease.  相似文献   

9.
Cellular behaviour during development is dictated, in part, by the insoluble extracellular matrix and the soluble growth factor peptides, the major molecules responsible for integrating cells into morphologically and functionally defined groups. These extracellular molecules influence cellular behaviour by binding at the cell surface to specific receptors that transduce intracellular signals in various ways not yet fully clear. Syndecan, a cell surface proteoglycan found predominantly on epithelia in mature tissues binds both extracellular matrix components (fibronectin, collagens I, III, V, and thrombospondin) and basic fibroblast growth factor (bFGF). Syndecan consists of chondroitin sulfate and heparan sulphate chains linked to a 31 kilodalton (kDa) integral membrane protein. Syndecan represents a family of integral membrane proteoglycans that differ in extracellular domains, but share cytoplasmic domains. Syndecan behaves as a matrix receptor: it binds selectively to components of the extracellular matrix, associates intracellularly with the actin cytoskeleton when cross-linked at the cell surface, its extracellular domain is shed upon cell rounding and it localizes solely to basolateral surfaces of simple epithelia. Mammary epithelial cells made syndecan-deficient become fibroblastic in morphology and cell behaviour, showing that syndecan maintains epithelial cell morphology. Syndecan changes in quantity, location and structure during development: it appears initially on four-cell embryos (prior to its known matrix ligands), becomes restricted in the pre-implementation embryo to the cells that will form the embryo proper, changes its expression due to epithelial-mesenchymal interactions (for example, induced in kidney mesenchyme by the ureteric bud), and with association of cells with extracellular matrix (for example, during B-cell differentiation), and ultimately, in mature tissues becomes restricted to epithelial tissues. The number and size of its glycosaminoglycan chains vary with changes in cell shape and organization yielding tissue type-specific polymorphic forms of syndecan. Its interactions with the major extracellular effector molecules that influence cell behaviour, its role in maintaining cell shape and its spatial and temporal changes in expression during development indicate that syndecan is involved in morphogenesis.  相似文献   

10.
Bone morphogenetic protein 2B (BMP 2B, also known as BMP 4) induces cartilage and bone morphogenesis in ectopic extraskeletal sites. BMP 2B is one of several bone morphogenetic proteins which along with activins and inhibins are members of the transforming growth factor-beta (TGF-beta) family. Both BMP 2B and activin A, but not TGF-beta 1, induce rat pheochromocytoma PC12 neuronal cell differentiation and expression of VGF, a nervous system-specific mRNA. PC12 cells exhibited approximately 2,500 receptors per cell for BMP 2B with an apparent dissociation constant of 19 pM. Extracellular matrix components, including fibronectin, laminin, and collagen type IV potentiated the activity of BMP and activin A, with the latter being the most active. Direct experiments demonstrated that radioiodinated BMP 2B bound to collagen type IV better than to either laminin or fibronectin. These data demonstrate a common neurotrophic activity of both BMP 2B and activin A, and suggest that these regulatory molecules alone and in conjunction with extracellular matrix components may play a role in both the development and repair of nervous tissue.  相似文献   

11.
SPARC (osteonectin/BM-40)   总被引:8,自引:0,他引:8  
SPARC (Secreted ProteinAcidic and Rich in Cysteine) is a prototype of a family of biologically active glycoproteins that bind to cells and to extracellular matrix (ECM) components. It is expressed spatially and temporally during embryogenesis, tissue remodeling and repair. SPARC is a modular protein (34 kDa) comprised of three structural domains, one or more of which are implicated in the regulation of cell adhesion, proliferation, matrix synthesis/turnover. Rapid proteolysis of SPARC by extracellular proteases accounts for its transient detection in the extracellular environment. The proposed roles of SPARC in the development of cataracts and the regulation of angiogenesis during wound healing and tumor growth account for the recent attention it has received from the biomedical community.  相似文献   

12.
13.
Cell mechanics studied by a reconstituted model tissue   总被引:11,自引:0,他引:11       下载免费PDF全文
Tissue models reconstituted from cells and extracellular matrix (ECM) simulate natural tissues. Cytoskeletal and matrix proteins govern the force exerted by a tissue and its stiffness. Cells regulate cytoskeletal structure and remodel ECM to produce mechanical changes during tissue development and wound healing. Characterization and control of mechanical properties of reconstituted tissues are essential for tissue engineering applications. We have quantitatively characterized mechanical properties of connective tissue models, fibroblast-populated matrices (FPMs), via uniaxial stretch measurements. FPMs resemble natural tissues in their exponential dependence of stress on strain and linear dependence of stiffness on force at a given strain. Activating cellular contractile forces by calf serum and disrupting F-actin by cytochalasin D yield "active" and "passive" components, which respectively emphasize cellular and matrix mechanical contributions. The strain-dependent stress and elastic modulus of the active component were independent of cell density above a threshold density. The same quantities for the passive component increased with cell number due to compression and reorganization of the matrix by the cells.  相似文献   

14.
Collective cell migration in morphogenesis and cancer   总被引:9,自引:0,他引:9  
The movement of cells that maintain cell-cell junctions yet protrude along or within tissues is an important mechanism for cell positioning in morphogenesis, tissue repair and cancer. Collective cell migration shares similarities but also important differences to individually migrating cells. Coherent groups of cells are arranged and held together by cell-cell adhesion molecules, including cadherins, integrins, ALCAM and NCAM. Integrins of the beta 1 and beta 3 families further provide polarized interactions with the extracellular tissue environment, while matrix-degrading proteases become focalized to substrate contacts to widen tissue space for the advancing cell mass. By generating one functional unit, in contrast to individual cell migration, collective migration provides the active and passive translocation of mobile and non-mobile cells, respectively. This review highlights cellular and molecular principles of collective migration in the context of morphogenic tissue patterning and tumor cell invasion.  相似文献   

15.
The extracellular matrix (ECM) is an essential feature of development, tissue homeostasis and recovery from injury. How the ECM responds dynamically to cellular and soluble components to support the faithful repair of damaged tissues in some animals but leads to the formation of acellular fibrotic scar tissue in others has important clinical implications. Studies in highly regenerative organisms such as the zebrafish and the salamander have revealed a specialist formulation of ECM components that support repair and regeneration, while avoiding scar tissue formation. By comparing a range of different contexts that feature scar-less healing and full regeneration vs. scarring through fibrotic repair, regenerative therapies that incorporate ECM components could be significantly enhanced to improve both regenerative potential and functional outcomes. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.  相似文献   

16.
Adipose-derived adult stem cells for cartilage tissue engineering   总被引:9,自引:0,他引:9  
Guilak F  Awad HA  Fermor B  Leddy HA  Gimble JM 《Biorheology》2004,41(3-4):389-399
Tissue engineering is a promising therapeutic approach that uses combinations of implanted cells, biomaterial scaffolds, and biologically active molecules to repair or regenerate damaged or diseased tissues. Many diverse and increasingly complex approaches are being developed to repair articular cartilage, with the underlying premise that cells introduced exogenously play a necessary role in the success of engineered tissue replacements. A major consideration that remains in this field is the identification and characterization of appropriate sources of cells for tissue-engineered repair of cartilage. In particular, there has been significant emphasis on the use of undifferentiated progenitor cells, or "stem" cells that can be expanded in culture and differentiated into a variety of different cell types. Recent studies have identified the presence of an abundant source of stem cells in subcutaneous adipose tissue. These cells, termed adipose-derived adult stem (ADAS) cells, show characteristics of multipotent adult stem cells, similar to those of bone marrow derived mesenchymal stem cells (MSCs), and under appropriate culture conditions, synthesize cartilage-specific matrix proteins that are assembled in a cartilaginous extracellular matrix. The growth and chondrogenic differentiation of ADAS cells is strongly influenced by factors in the biochemical as well as biophysical environment of the cells. Furthermore, there is strong evidence that the interaction between the cells, the extracellular biomaterial substrate, and growth factors regulate ADAS cell differentiation and tissue growth. Overall, ADAS cells show significant promise for the development of functional tissue replacements for various tissues of the musculoskeletal system.  相似文献   

17.
Abstract

The neural crest (NC) is a population of migratory stem/progenitor cells that is found in early vertebrate embryos. NC cells are induced during gastrulation, and later migrate to multiple destinations and contribute to many types of cells and tissues, such as craniofacial structures, cardiac tissues, pigment cells and the peripheral nervous system. Recently, accumulating evidence suggests that many extracellular metalloproteinases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAMs with thrombospondin motifs (ADAMTSs), play important roles in various stages of NC development. Interference with metalloproteinase functions often causes defects in craniofacial structures, as well as in other cells and tissues that are contributed by NC cells, in humans and other vertebrates. In this review, we summarize the current state of the field concerning the roles of these three families of metalloproteinases in NC development and related tissue morphogenesis, with a special emphasis on craniofacial morphogenesis.  相似文献   

18.
Embryonic development is an exceptionally dynamic process, requiring a provisional extracellular matrix that is amenable to rapid remodeling, and proteolytic or non-proteolytic mechanisms that can remodel the major components of this matrix. Versican is a chondroitin-sulfate proteoglycan that forms highly hydrated complexes with hyaluronan and is widely distributed in the provisional matrix of mammalian embryos. It has been extensively studied in the context of cardiovascular morphogenesis, neural crest cell migration and skeletal development. Analysis of Vcan transgenic mice has established the requirement for versican in cardiac development and its role in skeletogenesis. The ADAMTS family includes several versican-degrading proteases that are active during remodeling of the embryonic provisional matrix, especially during sculpting of versican-rich tissues. Versican is cleaved at specific peptide bonds by ADAMTS proteases, and the cleavage products are detectable by neo-epitope antibodies. Myocardial compaction, closure of the secondary palate (in which neural crest derived cells participate), endocardial cushion remodeling, myogenesis and interdigital web regression are developmental contexts in which ADAMTS-mediated versican proteolysis has been identified as a crucial requirement. ADAMTS proteases are expressed coordinately and function cooperatively in many of these contexts. In addition to versican clearance, ADAMTS proteases generate a bioactive versican fragment containing the N-terminal G1 domain, which we have named versikine. This review promotes the view that the embryonic extracellular matrix has evolved not only to provide a permissive environment for embryo growth and morphogenesis, but through its dissolution to influence and regulate cellular processes.  相似文献   

19.
The joint is a discrete unit that consists of cartilage, bone, tendon and ligaments. These tissues are all composed of an extracellular matrix made of collagens, proteoglycans and specialised glycoproteins that are actively synthesised, precisely assembled and subsequently degraded by the resident connective tissue cells. A balance is maintained between matrix synthesis and degradation in healthy adult tissues. Different classes of proteinases play a part in connective tissue turnover in which active proteinases can cleave matrix protein during resorption, although the proteinase that predominates varies between different tissues and diseases. The metalloproteinases are potent enzymes that, once activated, degrade connective tissue and are inhibited by tissue inhibitors of metalloproteinases (TIMPs); the balance between active matrix metalloproteinases and TIMPs determines, in many tissues, the extent of extracellular matrix degradation. The serine proteinases are involved in the initiation of activation cascades and some, such as elastase, can directly degrade the matrix. Cysteine proteinases are responsible for the breakdown of collagen in bone following the removal of the osteoid layer and the attachment of osteoclasts to the exposed bone surface. Various growth factors increase the synthesis of matrix and proteinase inhibitors, whereas cytokines (alone or in combination) can inhibit matrix synthesis and stimulate proteinase production and matrix destruction.  相似文献   

20.
Repair of tissue after injury depends on the synthesis of a fibrous extracellular matrix to replace lost or damaged tissue. Newly deposited extracellular matrix is then re-modeled over time to emulate normal tissue. The extracellular matrix directs repair by regulating the behavior of the wide variety of cell types that are mobilized to the damaged area in order to rebuild the tissue. Acute inflammation, re-epithelialization, and contraction all depend on cell-extracellular matrix interactions and contribute to minimize infection and promote rapid wound closure. Matricellular proteins are up-regulated during wound healing where they modulate interactions between cells and the extracellular matrix to exert control over events that are essential for efficient tissue repair. Here, we discuss how the extracellular matrix changes during the stages of tissue repair, how matricellular proteins affect cell-extracellular matrix interactions, and how these proteins might be exploited for use therapeutically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号