首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stimulation or inhibition of ribulose diphosphate oxygenase by a variety of compounds is compared with the reported effects on these compounds on the ribulose diphosphate carboxylase activity. A possible transition state analog of ribulose diphosphate, 2-carboxyribitol 1, 5-diphosphate, at a molar ratio of inhibitor to enzyme of 10 to 1, irreversibly inactivates the oxygenase and carboxylase activities. This is consistent with the hypothesis that there may be a single active site for both the carboxylase and oxygenase activities. Several compounds of the reductive pentose photosynthetic carbon cycle act as effectors of the ribulose diphosphate oxygenase in a manner complementary to their reported effect upon the carboxylase. Ribose 5-phosphate inhibits the oxygenase with an apparent Ki of 1.8 mM, but it is reported to activate the carboxylase; fructose 6-phosphate and glucose 6-phosphate act similarly but are less effective than ribose 5-phosphate. Fructose 1. 6-diphosphate stimulates the oxygenase at low magnesium ion concentrations. The stimulatory effect of 6-phosphogluconate on the oxygenase is associated with a 3-fold reduction of the Km (Mg2+). ATP inhibits the oxygenase but has been reported to stimulate the carboxylase; pyrophosphate acts in an opposite manner. From these results it appears that the ratio of carboxylase to oxygenase activity may be a variable factor with predictable subsequent alteration in the ratio between photosynthetic CO2 fixation and photorespiration.  相似文献   

2.
Light was not essential for the development of ribulose-1,5-diphosphate carboxylase protein or catalytic activity in the photosynthetic cotyledons of germinating castor beans (Ricinus communis). Cotyledons developing in the dark showed higher activity than those in the light. Returning cotyledons developing in the light to darkness resulted in a significant increase in ribulose-1,5-diphosphate carboxylase activity compared to cotyledons in continuous light.  相似文献   

3.
Enzyme levels in relation to obligate phototrophy in chlamydobotrys   总被引:3,自引:3,他引:0       下载免费PDF全文
During the transition from photoheterotrophic growth on acetate to phototrophic growth on carbon dioxide, there is a decrease in isocitrate lyase and increase in ribulose-1,5-diphosphate carboxylase activity in Chlamydobotrys stellata cultures. The increase in ribulose-1,5-diphosphate carboxylase activity is the result of protein synthesis, there being a close correlation between increase in enzyme activity and protein precipitated by antibody to ribulose-1,5-diphosphate carboxylase. The purified ribulose-1,5-diphosphate carboxylase was similar to the constitutive enzyme from other green algae having a molecular weight of 530,000 and composed of two types of subunit of molecular weight 53,000 and 14,000.  相似文献   

4.
A crude chloroplast preparation of primary leaves of Phaseolus vulgaris was allowed to incorporate 14C-leucine into protein. A chloroplast extract was prepared and purified for ribulose 1,5-diphosphate carboxylase by ammonium sulfate precipitation, chromatography on Sephadex G-200, and chromatography on Sepharose 4B. The distribution of radioactive protein and enzyme in fractions eluted from Sepharose 4B was nearly the same. The radioactivity in the product was in peptide linkage, since it was digested to a trichloroacetic acid-soluble product by Pronase. Whole cells in the plastid preparation were not involved in the incorporation of amino acid into the fraction containing ribulose 1,5-diphosphate carboxylase, since incorporation still occurred after removal of cells. The incorporation into the fraction containing ribulose 1,5-diphosphate carboxylase occurs on ribosomes of plastids, since this incorporation is inhibited by chloramphenicol. These plastid preparations may be incorporating amino acid into ribulose 1,5-diphosphate carboxylase, but the results are not conclusive on this point.  相似文献   

5.
Adenine, cytosine, guanine, and uracil nucleotides were surveyed as possible modulators of Escherichia coli phosphoenolpyruvate carboxylase. CMP, CDP, CTP, GDP, and GTP activate, ATP and GMP inhibit. The other nucleotides are without effect. Nucleotide activation is synergistic with acetyl-CoA or laurate. Cytosine nucleotide activation is also synergistic with fructose 1,6-diphosphate, whereas guanine nucleotide activation is not. The pH profiles for CMP and GDP activation, studied individually between pH 7.0 and 9.0, are similar to those for activation by fructose 1,6-diphosphate. ATP inhibits activation by acetyl-CoA, laurate, or fructose 1,6-diphosphate. Pairs of activators synergistically relieve the inhibition. Acetyl-CoA with laurate is most effective. Energy charge profiles suggest little sensitivity to charge fluctuation near 0.8. Ribose 5-phosphate also inhibits activation by acetyl-CoA, laurate, or fructose 1,6-diphosphate. GMP selectively inhibits fructose 1,6-diphosphate activation.  相似文献   

6.
A seven-step sequential grinding procedure was applied to leaves of Atriplex rosea, Sorghum sudanense, and Spinacia oleracea to study the distribution of carboxylases and microbody enzymes. In the extracts from C4 species there were 7- to 10-fold reciprocal changes in specific activities of ribulose-1, 5-diphosphate carboxylase and phosphoenolpyruvate carboxylase. No such changes occurred in sequential extracts from spinach. No inhibitors of ribulose-1, 5-diphosphate carboxylase were detected when the mesophyll extracts of Sorghum were assayed together with spinach extracts. These results reaffirm the conclusion of others that phosphoenolpyruvate carboxylase is largely confined to the mesophyll in these species and ribulose-1, 5-diphosphate carboxylase to the bundle sheath. The specific activities of glycolate oxidase and hydroxypyruvate reductase in bundle sheath extracts were two to three times those in mesophyll fractions. Catalase behaved similarly in Atriplex rosea but in Sorghum the specific activity was virtually the same in all fractions. From the relative amounts of these enzymes present, and comparison with the data obtained from spinach, it is concluded that typical leaf peroxisomes are present in the bundle sheaths of both C4 species and in the mesophyll of Atriplex rosea. The relative enzyme activities in the mesophyll of Sorghum suggest that the microbodies there are of the non-specialized type found in many nongreen tissues. The activities of the microbody enzymes in the bundle sheath of Sorghum seem quite inadequate to support photorespiration.  相似文献   

7.
Ribulose 1,5-diphosphate carboxylase, when activated by preincubation with 1 mm bicarbonate and 10 mm MgCl2 in the absence of ribulose 1,5-diphosphate, remains activated for 20 minutes or longer after reaction is initiated by addition of ribulose diphosphate. If as little as 50 μm 6-phosphogluconate is added during this preincubation period, 5 minutes before the start of the reaction, a further 188% activation is observed. However, addition of 6-phosphogluconate at the same time or later than addition of ribulose diphosphate, or at any time with 50 mm bicarbonate, gives inhibition of the enzyme activity. Possible relevance of these effects in vivo regulatory effects is discussed.  相似文献   

8.
A crude preparation of PEP carboxylase (EC 4.1.1.31) from the yellow lupin roots exhibits the pH optimum of activity within the range of 7.4-8.6 and the temperature optimum at 32 - 40 degrees C. Its Km for PEP is 0.1 mM, and Km for HCO3- is 0.7 mM. The affinity of the enzyme towards Mg2+ diminishes with the metal ion concentration. At the concentration of Mg2+ below 0.5 mM Km for Mg2+ is 0.07 mM and at the Mg2+ concentration over 1.5 mM it rises to 0.47 mM. The Hill coefficients are 0.37 and 0.88, respectively. Among several compounds affecting the PEP carboxylase activity, such as organic acids, amino acids, and sugar phosphates, at physiological pH (7.0 and 7.8), malate shows the strongest inhibition of a competitive character, its Ki being 2 mM. Also acidic amino acids strongly inhibit the enzyme activity, aspartate being more effective than glutamate. Glucose 6-phosphate and fructose 1,6-diphosphate markedly activate the enzyme. Both the inhibition by malate, aspartate and glutamate, and the activation by sugar phosphates rises considerably when pH is decreased from 7.8 to 7.0. Malonate scarcely affects the enzyme.  相似文献   

9.
A mutant strain of the green alga Chlamydomonas reinhardi, ac-20, is described in which both the rate of CO2 fixation by whole cells and the rate of carboxylation of ribulose-1,5-diphosphate in cell-free extracts are reduced, particularly when sodium acetate is present in the growth medium. Of the enzymes of the reductive pentose phosphate cycle tested, only ribulose-1,5-diphosphate carboxylase activity is reduced in the mutant strain, and it appears that the low carboxylase activity limits the strain's rate of photosynthetic carbon metabolism. Evidence is presented to show that the fluctuation in the level of the enzyme activity in the presence or absence of acetate results from the fluctuation in the level of some factor(s) limiting the rate of synthesis of the protein.  相似文献   

10.
Laing WA 《Plant physiology》1974,54(5):678-685
Kinetic properties of soybean net photosynthetic CO2 fixation and of the carboxylase and oxygenase activities of purified soybean (Glycine max [L.] Merr.) ribulose 1, 5-diphosphate carboxylase (EC 4.1.1.39) were examined as functions of temperature, CO2 concentration, and O2 concentration. With leaves, O2 inhibition of net photosynthetic CO2 fixation increased when the ambient leaf temperature was increased. The increased inhibition of CO2 fixation at higher temperatures was caused by a reduced affinity of the leaf for CO2 and an increased affinity of the leaf for O2. With purified ribulose 1,5-diphosphate carboxylase, O2 inhibition of CO2 incorporation and the ratio of oxygenase activity to carboxylase activity increased with increased temperature. The increased O2 sensitivity of the enzyme at higher temperature was caused by a reduced affinity of the enzyme for CO2 and a slightly increased affinity of the enzyme for O2. The similarity of the effect of temperature on the affinity of intact leaves and of ribulose 1,5-diphosphate carboxylase for CO2 and O2 provides further evidence that the carboxylase regulates the O2 response of photosynthetic CO2 fixation in soybean leaves. Based on results reported here and in the literature, a scheme outlining the stoichiometry between CO2 and O2 fixation in vivo is proposed.  相似文献   

11.
The development of glycolate pathway enzymes has been determined in relation to photosynthetic competence during the regreening of Euglena cultures. Phosphoglycolate phosphatase and glycolate dehydrogenase rapidly reached maximal levels of activity but the complete development of ribulose 1,5-diphosphate carboxylase and concomitant photosynthetic carbon dioxide fixation were not attained until 72 hours of illumination. Specific inhibitors of protein synthesis showed that the formation of ribulose 1,5-diphosphate carboxylase in both division-synchronized and regreening cultures was prevented by both cycloheximide and d-threo-chloramphenicol, whereas phosphoglycolate phosphatase formation was only inhibited by d-threo-chloramphenicol but not by l-threo-chloramphenicol or cycloheximide. Since cycloheximide prevented ribulose diphosphate carboxylase synthesis and photosynthetic carbon dioxide fixation without affecting phosphoglycolate phosphatase synthesis during regreening, it was concluded that photosynthetic competence was not necessary for the development of the glycolate pathway enzymes. The inhibition of phosphoglycolate phosphatase synthesis by d-threo-chloramphenicol but not by l-threo-chloramphenicol or cycloheximide shows that the enzyme was synthesized exclusively on chloroplast ribosomes, whereas protein synthesis on both chloroplast and cytoplasmic ribosomes was required for the formation of ribulose 1,5-diphosphate carboxylase. Although light is required for the development of both Calvin cycle and glycolate pathway enzymes during regreening it is concluded that the two pathways are not coordinately regulated.  相似文献   

12.
Urease and ribulose 1, 5-diphosphate carboxylase can be bound to Sepharose to give an immobilized two-enzyme system which catalyzes the reaction urea → H2CO3 → phosphoglyceric acid. The observed Km of the system for urea approaches the lower value for urease when carboxylase levels on the gel exceed urease levels. If a similar system operates in the chloroplast, the high Km (H2CO3) of ribulose 1,5-diphosphate carboxylase may not be metabolically significant.  相似文献   

13.
Leaves of dark-grown corn (Zea mays) were illuminated for periods ranging from 3 minutes to 12 hours. The changes in the activities of ribose-5-phosphate isomerase, ribulose-5-phosphate kinase, and ribulose-1,5-diphosphate carboxylase were followed.

The activity of ribose-5-phosphate isomerase did not change significantly until between 12 and 24 hours of illumination. An increase in ribulose-5-phosphate kinase activity occurred after a lag of about 6 hours. The increase in carboxylase activity began after 3 minutes of illumination and increased until after 3 to 6 hours in the light, after which it began to decline. The increases in these enzymes appear to be the result of protein synthesis.

  相似文献   

14.
Ribulose-1,5-diphosphate oxygenase activity of ribulose-1,5-diphosphate carboxylase was completely inhibited by preincubation of the enzyme with 5mM hydroxylamine in presence of the substrate ribulose-1,5-diphosphate. Inhibition by hydroxylamine was uncompetitive with respect to ribulose-1,5-diphosphate and noncompetitive with respect to magnesium. Carboxylase activity was not affected by hydroxylamine. These results suggest that the two activities of the enzyme can be regulated differentially and that inhibiting the oxygenase activity does not stimulate the carboxylase activity of the enzyme. The data further suggest that the inhibition by hydroxylamine may be through its interaction with carbonyl groups of the enzyme exposed on the binding of ribulose-1,5-diphosphate to the protein.  相似文献   

15.
A substantial portion of the ribulose 1,5-diphosphate carboxylase activity in the endosperm of germinating castor beans (Ricinus communis var. Hale) is recovered in the proplastid fraction. The partially purified enzyme shows homology with the enzyme from spinach (Spinacia oleracea) leaves, as evidenced by its reaction against antibodies to the native spinach enzyme and to its catalytic subunit. The enzyme from the endosperm of castor beans has a molecular weight of about 500,000 and, with the exception of a higher affinity for ribulose 1,5-diphosphate, has similar kinetic properties to the spinach enzyme. The castor bean carboxylase is inhibited by oxygen and also displays ribulose 1,5-diphosphate oxygenase activity with an optimum at pH 7.5.  相似文献   

16.
Ribulose 1,5-diphosphate carboxylase, when activated by preincubation with 10 mm MgCl2 and 1 mm bicarbonate in the absence of ribulose 1,5-diphosphate, can be further activated about 170% with 0.5 mm NADPH present in the preincubation mixture. NADP+, NADH, and NAD+ are ineffective. The activation by NADPH is comparable to that previously seen with 0.05 to 0.10 mm 6-phosphogluconate in that these specific preincubation conditions are required, but the effects of NADPH and 6-phosphogluconate are not additive. Moreover, where higher concentrations of 6-phosphogluconate inhibited the enzyme, higher concentrations of NADPH give a greater activation, saturating at about 1 mm and 200%. Under the specified conditions of preincubation, fructose 1,6-diphosphate has an activation curve similar to that of 6-phosphogluconate, peaking at 0.1 mm and 70%. Above this level, activation decreases, and inhibition is seen at still higher concentrations. Other metabolites tested produced smaller or no effects on the enzyme activity assayed under these conditions. When either reduced NADP or 6-phosphogluconate are present in the preincubation mixture, it becomes possible to determine the Km for bicarbonate using a Lineweaver-Burk plot, and the Km for bicarbonate under these conditions is 2.8 mm, corresponding to 0.3% CO2 at pH 7.8 and 25 C.  相似文献   

17.
Symptoms typical of senescence occurred in green detached primary barley (Hordeum vulgare L.) leaves placed in darkness and in light. Chlorophyll, total soluble protein, ribulose 1,5-diphosphate carboxylase protein and activity each progressively decreased in darkness and to a lesser extent in light. In all treatments most of the total soluble protein lost was accounted for by a decrease in ribulose 1,5-diphosphate carboxylase protein, suggesting that the chloroplast was a major site of degradation early in senescence.  相似文献   

18.
Osmond CB 《Plant physiology》1972,49(2):260-263
This paper reports effects of salts on in vitro activity of phosphoenolpyruvate carboxylase and ribulose-1,5-diphosphate carboxylase, isolated from species differing in salt tolerance.  相似文献   

19.
The ribulose 1,5-diphosphate carboxylase from Gonyaulax polyedra Stein. has a half-life of about four hours in buffer, but can be stabilized by the addition of 50% glycerol. The optimum pH is 7.8 to 8.0 and the optimum Mg2+ concentration is 3 mm. Heavy metal ions (Cu2+, Hg2+, Ni2+, Zn2+), EDTA, pyrophosphate, and adenosine triphosphate were strongly inhibitory. Ribulose 1,5-diphosphate carboxylase from Gonyaulax was not cold-sensitive or activated by light activation factor from tomato or Gonyaulax. No difference in the activity of this enzyme was detected when extracts prepared at the maximum and the minimum of the circadian rhythm of photosynthesis were compared. The Km of HCO3 was also the same (16 to 19 mm).  相似文献   

20.
Metabolic alterations mediated by 2-ketobutyrate in Escherichia coli K12   总被引:9,自引:0,他引:9  
Summary We have previously proposed that 2-ketobutyrate is an alarmone in Escherichia coli. Circumstantial evidence suggested that the target of 2-ketobutyrate was the phosphoenol pyruvate: glycose phosphotransferase system (PTS). We demonstrate here that the phosphorylated metabolites of the glycolytic pathway experience a dramatic downshift upon addition of 2-ketobutyrate (or its analogues). In particular, fructose-1,6-diphosphate, glucose-6-phosphate, fructose-6-phosphate and acetyl-CoA concentrations drop by a factor of 10, 3, 4, and 5 respectively. This result is consistent with (i) an inhibition of the PTS by 2-ketobutyrate, (ii) a control of metabolism by fructose-1,6-diphosphate. Since fructose-1,6-diphosphate is an activator of phosphoenol pyruvate carboxylase and of pyruvate kinase, the concentration of their common substrate, phosphoenol pyruvate, does not decrease in parallel.Abbreviations G1P glucose-1-phosphate - G6P glucose-6-phosphate - F6P fructose-6-phosphate - F1-6DP fructose-1,6-diphosphate - PEP phosphoenol pyruvate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号