首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Four monoclonal antibodies that discriminate between structural domains of alpha-(TU-01, TU-04) or beta-(TU-06, TU-12) tubulin and a polyclonal anti-tubulin antibody were used for immunostaining of human spermatozoa using immunofluorescence microscopy. Specificity of antibodies was confirmed by immunoblotting experiments. Antibodies TU-01 and TU-06 uniformly stained the whole tail and the neck, whereas antibodies TU-04, TU-12 showed differential distribution of corresponding epitopes in the stable arrays of flagellar microtubules. Of the monoclonal antibodies used, only TU-12 against the antigenic determinant on C-terminal domain of -tubulin showed strong reactivity with the equatorial segment of the head. The results document a differential exposure of tubulin epitopes at the single-cell level and suggest the existence of distinct tubulin populations in various structural compartments of the human spermatozoon.  相似文献   

2.
Summary A panel of six monoclonal antibodies against alpha (TU-01, TU-03, TU-04, TU-05, TU-09) or beta (TU-13) subunits of tubulin was used to study expression of tubulin epitopes in 14-day-old mouse embryos. Specificity of antibodies was confirmed by immunoblotting experiments. Monoclonal antibodies TU-01, TU-09 and TU-13, like the polyclonal antibody reacted essentially with all tissues, whereas other antibodies displayed differential reactivity. Most notably, TU-03 reacted very strongly with simple epithelia and basal layer of stratified epithelial layers. TU-04 recognized maturation related changes in spinal cord. Reactivity of TU-05 was restricted to central nervous system and peripheral nerves.Present results document immunohistochemical heterogeneity of tubulin in fetal tissues and suggest the existence of maturation and tissue specific epitopes of tubulin in developing organs.  相似文献   

3.
Heterogeneity of tubulin epitopes in mouse fetal tissues   总被引:2,自引:0,他引:2  
A panel of six monoclonal antibodies against alpha (TU-01, TU-03, TU-04, TU-05, TU-09) or beta (TU-13) subunits of tubulin was used to study expression of tubulin epitopes in 14-day-old mouse embryos. Specificity of antibodies was confirmed by immunoblotting experiments. Monoclonal antibodies TU-01, TU-09 and TU-13, like the polyclonal antibody reacted essentially with all tissues, whereas other antibodies displayed differential reactivity. Most notably, TU-03 reacted very strongly with simple epithelia and basal layer of stratified epithelial layers. TU-04 recognized maturation related changes in spinal cord. Reactivity of TU-05 was restricted to central nervous system and peripheral nerves. Present results document immunohistochemical heterogeneity of tubulin in fetal tissues and suggest the existence of maturation and tissue specific epitopes of tubulin in developing organs.  相似文献   

4.
Four monoclonal antibodies raised to alpha subunit of pig brain tubulin (TU-01, TU-02, TU-03, TU-04) were used to study immunohistochemical heterogeneity of alpha tubulin in human epithelia. Selective reactivity was detected in the skin and trachea/bronchi, whereas all other epithelia investigated reacted uniformly with all four monoclonal antibodies. In the skin TU-01 reacted very strongly with all layers except the basal layer; TU-02 reacted strongly with granular layer and was unreactive or only weakly reactive with others; TU-03 reacted very strongly with basal layer and weakly to moderately with superficial layers; TU-04 reacted strongly with the granular layer of epidermis and was unreactive with other layers. In the trachea and major bronchi TU-01 reacted with the entire epithelial layer; TU-02 reacted only with superficial layer; TU-03 reacted with superficial and basal layer; TU-04 reacted only with superficial layer. Different staining patterns obtained with these four monoclonal antibodies indicate that there is immunohistochemical heterogeneity of alpha tubulin in some but not all normal human epithelia.  相似文献   

5.
Summary Four monoclonal antibodies raised to alpha subunit of pig brain tubulin (TU-01, TU-02, TU-03, TU-04) were used to study immunohistochemical heterogeneity of alpha tubulin in human epithelia. Selective reactivity was detected in the skin and trachea/bronchi, whereas all other epithelia investigated reacted uniformly with all four monoclonal antibodies. In the skin TU-01 reacted very strongly with all layers except the basal layer; TU-02 reacted strongly with granular layer and was unreactive or only weakly reactive with others; TU-03 reacted very strongly with basal layer and weakly to moderately with superficial layers; TU-04 reacted strongly with the granular layer of epidermis and was unreactive with other layers. In the trachea and major bronchi TU-01 reacted with the entire epithelial layer; TU-02 reacted only with superficial layer; TU-03 reacted with superficial and basal layer; TU-04 reacted only with superficial layer. Different staining patterns obtained with these four monoclonal antibodies indicate that there is immunohistochemical heterogeneity of alpha tubulin in some but not all normal human epithelia.  相似文献   

6.
 A panel of monoclonal antibodies specific of α-tubulin (TU-01, TU-09) and β-tubulin (TU-06, TU-13) subunits was used to study the location of N-terminal structural domains of tubulin in adult mouse brain. The specificity of antibodies was confirmed b immunoblotting experiments. Immunohistochemical staining of vibratome sections from cerebral cortex, cerebellum, hippocampus, and corpus callosum showed that antibodies TU-01, TU-09, and TU13 reacted with neuronal and glial cells and their processes, whereas the TU-06 antibody stained only the perikarya. Dendrites and axons were either unstained or their staining was very weak. As the TU-06 epitope is located on the N-terminal structural domain of β-tubulin, the observed staining pattern cannot be interpreted as evidence of a distinct subcellular localization of β-tubulin isotypes or known post-translational modifications. The limited distribution of the epitope could, rather, reflect differences between the conformations of tubulin molecules in microtubules of somata and neurites or, alternatively, a specific masking of the corresponding region on the N-terminal domain of β-tubulin by interacting protein(s) in dendrites and axons. Accepted: 11 November 1996  相似文献   

7.
The exposure of tubulin epitopes was studied in ejaculated boar spermatozoa using a panel of four monoclonal antibodies specific to the N-terminal or C-terminal structural domains of tubulin and three monoclonal antibodies against class III beta-tubulin. The specificity of the antibodies was confirmed by immunoblotting. Immunocytochemical staining showed that antibodies discriminated between various parts of a spermatozoon, and that epitopes of class III beta-tubulin were present in the flagellum. A tubulin epitope from the C-terminal domain of beta-tubulin was detected in the triangular segment of the postacrosomal part of the sperm head. Its distribution changed after an A23187 ionophore-induced acrosome reaction, indicating that tubulin participates in the early stages of fertilization. Three monoclonal antibodies, TU-20, SDL.3D10, and TUJ1 directed against epitopes on the C-terminal end of neuron-specific class III beta-tubulin that is widely used as a neuronal marker, stained the flagella. The reactivity of TU-20 was further confirmed by absorbing the antibody with the immunizing peptide and by immunoelectron microscopy. Immunoblotting after two-dimensional electrophoresis revealed that the corresponding epitope was not present on all beta-tubulin isoforms. These results suggest that various tubulins are involved in the functional organization of the mammalian sperm flagellum and head.  相似文献   

8.
A set of four monoclonal antibodies against tubulin (TU-01, TU-02, TU-03, and TU-04) were produced using pig brain microtubule protein as antigen. Their characterization shows that all recognize antigenic determinants located on the tubulin alpha-subunit. However, peptide mapping of isolated alpha-tubulin, followed by immunoblotting with the monoclonal antibodies, shows that the antigenic determinants are located on different peptide fragments in at least three cases. The immunoreactivity with tubulins from different cells and tissues, ranging from eukaryotic microorganisms to man, was studied by immunoblotting and immunofluorescence. The antigenic determinants recognized by the antibodies are not uniformly distributed but, in some instances, are absent from tubulins of lower eukaryotic cells. These antibodies also make it possible to distinguish between different sets of microtubules within individual cells. Antigenically different microtubules are particularly evident in mouse spermatozoa and in some protozoa (T. vaginalis, H. muscarum, L. tropica, N. gruberi) possessing different sets of microtubules with different functions. These monoclonal antibodies can clearly identify the heterogeneity of tubulin or microtubules both from different organisms and within the same cell.  相似文献   

9.
Summary The immunoreactivity of a panel of anti-tubulin monoclonal antibodies with spreadingMizuhopecten yessoensis hemocytes was studied by immunofluorescence and immunoblotting. In immunoblotting all the antibodies used reacted only with bands corresponding to the position of tubulin subunits. Hemocytes showed a reorganization of microtubules and microfilaments during cell spreading. In spread-out cells the TU-04 antibody stained microtubules growing out of the centriole in the cell body; in contrast to TU-07 and TU-10 antibodies, which stained microspike-like bundles on the periphery of the cells. The presence of microfilaments in microspikes was detected by rhodamine-labeled phalloidin.Abbreviations CB cytoskeletal buffer - SWAM-FITC fluorescein isothiocyanate-labeled swine anti mouse immunoglobulin - MTOC microtubule organizing centers - SDS-PAGE SDS polyacrylamide gel electrophoresis  相似文献   

10.
Isoelectric focusing (IEF) of only approximately 1 microg of rat brain tubulin yields 27-30 distinct charge variants in the pH range of 4.5-5.4 with band separations of 0.01-0.02 pH units as detected by silver staining. Variants can be efficiently transferred from the immobilized gradient strip to polyvinylidene difluoride (PVDF) membranes for reaction with monoclonal antibodies. C-terminal-directed antibodies to alpha- and beta-tubulin yield patterns similar to N-terminal-directed antibodies. Removal of the acidic C-termini with subtilisin to form tubulin S increases the pI values by approximately 1 pH unit, leads to a loss in the isoelectric distinction between the alpha- and beta-tubulin variants seen by N-terminal-directed antibodies, and abolishes reactions with all beta-variants and all but three alpha variants by C-terminal-directed antibodies (TU-04 and TU-14). Many, but not all, of the variants are substrates for autopalmitoylation of rat brain tubulin. The distribution of isoelectric variants differs between cytoplasm and membrane fractions from PC12 pheochromocytoma cells. A potential role for different variants is suggested.  相似文献   

11.
Summary. Many of the highly organized microtubular arrangements in ciliates are located in the cortical area containing membrane vesicles and vacuoles. In Tetrahymena thermophila and Paramecium caudatum, immunofluorescence microscopy with the monoclonal antibody TU-06, directed against β-tubulin, revealed distinct staining of this cortical region alone, while the cilia and other microtubular structures were unstained. The specificity of the antibody was confirmed by immunoblotting and by preabsorption of the antibody with purified tubulin. Double-label immunofluorescence with antibodies against γ-tubulin, detyrosinated α-tubulin, and centrin showed that the TU-06 epitope is localized outside the basal body region. This was also confirmed by immunogold electron microscopy of thin sections. Proteolytic digestion of porcine brain β-tubulin combined with a peptide scan of immobilized, overlapping peptides disclosed that the epitope was in the β-tubulin region β81–95, a region which is phylogenetically highly conserved. As known posttranslational modifications of β-tubulin are located outside this area, the observed staining pattern cannot be interpreted as evidence of subcellular sequestration of modified tubulin. The limited distribution of the epitope could rather reflect the dependence of TU-06 epitope exposition on conformations of tubulin molecules in microtubule arrangements or on differential masking by interacting proteins. Correspondence and reprints: Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.  相似文献   

12.
Summary Monoclonal antibodies able to recognize single antigenic determinants are a powerful tool for the study of immunological heterogeneity of antigens. In this paper we have used a monoclonal antibody against the -subunit of pig brain tubulin (TU-01) to investigate the immunoreactivity of tubulins from mammals, avians, amphibia, echinodermata, plathelmints, slime moulds and protozoa. Immunoreactivity was detected using immunoblotting and indirect immunofluorescence of isolated cells. Our results show that the antigenic determinant recognized by the TU-01 antibody is present in all metazoan tubulin tested and among the eukaryotic microorganisms only in the flagellateTrichomonas vaginalis. Indirect immunofluorescence also reveals that not allTrichomonas microtubules are stained by TU-01 antibody indicating the presence of different tubulins within a single cell. This results are consistent with the multitubulin hypothesis (Fulton andSimpson 1976).  相似文献   

13.
Natural and induced antitubulin antibodies were compared for their epitope recognition on alpha- and beta-tubulin subunits by immunoenzymatic assays and Western blot techniques on partially digested tubulin molecules. Our results indicated that natural autoantibodies recognized different epitopes from those recognized by induced antibodies, because: 1) all polyspecific natural autoantibodies tested so far recognized the same or very overlapping epitopes in the central part of both alpha- and beta-subunits (between positions 100 and 300 on the tubulin amino acid sequence) and that this epitope differed from the various epitopes recognized by induced antitubulin antibodies on the amino-terminal or carboxy-terminal parts of the tubulin subunits; 2) one human myeloma protein (monoclonal (m)IgA, kappa) with a monospecific antitubulin activity bound to an epitope around position 310 on both alpha- and beta-subunits and a second human mIg (mIgM, kappa) with a monospecific anti-beta activity bound to an epitope on the carboxy-terminal part of the subunit around amino acid position 350. Both epitopes differed from epitopes recognized by induced antitubulin antibodies. These results thus confirmed our previous findings indicating that natural and induced antitubulin antibodies do not share cross-reactive idiotopes.  相似文献   

14.
Distribution of post-translationally modified tubulins in cells of Nicotiana tabacum L. was analysed using a panel of specific antibodies. Polyglutamylated, tyrosinated, nontyrosinated, acetylated and Δ2-tubulin variants were detected on α-tubulin subunits; polyglutamylation was also found on β-tubulin subunits. Modified tubulins were detected by immunofluorescence microscopy in interphase microtubules, preprophase bands, mitotic spindles as well as in phragmoplasts. They were, however, located differently in the various microtubule structures. The antibodies against tyrosinated, acetylated and polyglutamylated tubulins gave uniform staining along all microtubules, while antibodies against nontyrosinated and Δ2-tubulin provided dot-like staining of interphase microtubules. Additionally, immunoreactivity of antibodies against acetylated and Δ2-tubulins was strong in the pole regions of mitotic spindles. High-resolution isoelectric focusing revealed 22 tubulin charge variants in N. tabacum suspension cells. Immunoblotting with antibodies TU-01 and TU-06 against conserved antigenic determinants of α- and β-tubulin molecules, respectively, revealed that 11 isoforms belonged to the α-subunit and 11 isoforms to the β-subunit. Whereas antibodies against polyglutamylated, tyrosinated and acetylated tubulins reacted with several α-tubulin isoforms, antibodies against nontyrosinated and Δ2-tubulin reacted with only one. The combined data demonstrate that plant tubulin is extensively post-translationally modified and that these modifications participate in the generation of plant tubulin polymorphism. Received: 2 May 1996 / Accepted: 16 September 1996  相似文献   

15.
Five monoclonal antibodies against N-terminal domains of alpha- or beta-tubulin were tested for their ability to interfere with the in vitro formation of microtubules. Although all the antibodies exhibited similar association constants for immobilized tubulin, they differed in their inhibitory effect on microtubule assembly. For the most potent antibody, TU-13, the antibody/tubulin molar ratio of about 1:320 was sufficient for a 50% inhibition. The data indicate that the surface regions of N-terminal domains of tubulin are involved in the formation of microtubules.  相似文献   

16.
We have produced a library of monoclonal antibodies directed against a 37-amino acid synthetic polypeptide analogous to the carboxyl terminus of hCG. Five antibodies, designated FB01, FB02, FB03, FB04, and FB00, were developed and analyzed with respect to affinity and specificity for epitopes on human chorionic gonadotropin (hCG) and beta hCG by enzyme-linked immunoabsorbent and radioimmunoassays (RIA). All monoclonal antibodies demonstrated low affinity constants (approximately 10(-7) liters/mol) compared with those obtained by immunization with native beta hCG. One antibody, namely FB00, bound only to the synthetic peptide, whereas all other monoclonal antibodies recognized either free native beta hCG or both beta hCG and HCG. Antibodies produced against the synthetic peptide did not cross-react with other glycoprotein hormones such as LH, TSH, and FSH. Characterization of the monoclonal antibody-binding sites revealed the presence of at least four separate and distinct epitopes on the last 35 amino acids of beta hCG. Indeed, one epitope recognized by FB01 is located between residues 109 and 118, whereas another antigenic region recognized by FB04 appears to be present on the 109-121 portion of the molecule near or at position 118. One additional antigenic site was localized between residues 118 and 136. Finally, FB00 recognized an epitope located on the last 10 amino acids (136-145) of beta hCG. With the use of such antibodies, two- and three-site monoclonal RIA were developed and employed to detect free beta hCG and hCG in sera of patients with choriocarcinoma. These assays may be useful in the detection of beta hCG- and hCG-producing tumors and subsequent monitoring of patients in response to surgery and/or chemotherapy.  相似文献   

17.
Six monoclonal antibodies specific to human protein C were characterized. Epitopes of these antibodies were determined on isolated proteolytic peptides of protein C by immunological methods. Three antibodies bound light chain of protein C: PC01 bound the γ-carboxyglutamic acid domain calcium-dependently, while PC02 and PC08 bound the first epidermal growth factor-like domain in calcium-dependent and independent manners, respectively. The other three antibodies bound the heavy chain of protein C: PC13 bound activation peptide, PC04 recognized the activation site and PC09 bound the region close to a disulfide bond connecting light and heavy chains. Activation of protein C with thrombin-thrombomodulin complex was inhibited strongly by PC04 and moderately by PC08, PC09 and PC13. PC04 and PC13 may directly block the activation site. On the other hand, epitopes of PC08 and PC09 may be involved in interaction between protein C and thrombin-thrombomodulin complex, or locate close to activation site on the tertiary structure of protein C. Anticlotting activity of protein C was inhibited strongly by PC01 and moderately by PC02, PC08 and PC09, while amidolytic activity was inhibited only by PC09. The epitopes described here may constitute part of protein-C-specific sites, which are important for the function of protein C.  相似文献   

18.
We have previously produced and characterized four monoclonal antibodies to the Brucella DnaK protein which were derived from mice infected with B. melitensis or immunized with the B. melitensis cell wall fraction. By use of a recombinant DNA technique, we have localized a linear epitope, recognized by two of these monoclonal antibodies (V78/07B01/G11 and V78/09D04/D08), in the last 21 amino acids of the C-terminal region of the Brucella DnaK protein. The C-terminal region has been reported to be the most variable region among DnaK proteins. The two other monoclonal antibodies (A53/09G03/D02 and A53/01C10/A10) failed to react with the recombinant clones and might recognize discontinuous epitopes of the Brucella DnaK protein. The four monoclonal antibodies reacted with all recognized Brucella species and biovars in immunoblotting after SDS-PAGE. Monoclonal antibodies V78/07B01/G11 and V78/09D04/D08 did not react with reported cross-reacting bacteria nor with bacteria of the α-2 subdivision of the class Proteobacteria for which a close genetic relationship with Brucella spp. has been reported. However, monoclonal antibodies A53/09G03/D02 and A53/01C10/A10 reacted with Phyllobacterium rubiacearum and/or Ochrobactrum anthropi, both bacteria of the α-2 subdivision of the class Proteobacteria. The Brucella genus DnaK specific epitopes could be of importance for diagnostic purposes.  相似文献   

19.
A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM). We used several techniques, including ELISA and surface plasmon resonance (SPR), to determine the relationship between the ability of monoclonal antibodies (MAbs) to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145). Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits). Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens.  相似文献   

20.
Murine CMV (MCMV) encodes three viral genes that interfere with Ag presentation (VIPRs) to CD8 T cells, m04, m06, and m152. Because the functional impact of these genes during normal infection of C57BL/6 mice is surprisingly modest, we wanted to determine whether the VIPRs are equally effective against the entire spectrum of H-2(b)-restricted CD8 T cell epitopes. We also wanted to understand how the VIPRs interact at a functional level. To address these questions, we used a panel of MCMV mutants lacking each VIPR in all possible combinations, and CTL specific for 15 H-2(b)-restricted MCMV epitopes. Only expression of all three MCMV VIPRs completely inhibited killing by CTL specific for all 15 epitopes, but removal of any one VIPR enabled lysis by at least some CTL. The dominant interaction between the VIPRs was cooperation: m06 increased the inhibition of lysis achieved by either m152 or m04. However, for 1 of 15 epitopes m04 functionally antagonized m152. There was little differential impact of any of the VIPRs on K(b) vs D(b), but a surprising degree of differential impact of the three VIPRs for different epitopes. These epitope-specific differences did not correlate with functional avidity, or with timing of VIPR expression in relation to Ag expression in the virus replication cycle. Although questions remain about the molecular mechanism and in vivo role of these genes, we conclude that the coordinated function of MCMV's three VIPRs results in a powerful inhibition of lysis of infected cells by CD8 T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号