首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on bitter taste receptor T2R2 gene sequence of domesticated dog(AB249685), one pair of primers were designed and used to amplify an approximately 1.1 kb DNA fragment from genomic DNA sample of giant panda by using PCR. The PCR products were ligated into the pMD-18T vector, and then transformed into competent cells of E.coli DH5α. The identified positive clone was sequenced. The result showed that the T2R2 gene of giant panda was 1 008 bp in length, and contained complete exon, and 915 bp, encoding 304...  相似文献   

2.
3.
Barrier to autointegration factor 1 (BANF1) is a DNA-binding protein found in the nucleus and cytoplasm of eukaryotic cells that functions to establish nuclear architecture during mitosis. The cDNA and the genomic sequence of BANF1 were cloned from the Giant Panda (Ailuropoda melanoleuca) and Black Bear (Ursus thibetanus mupinensis) using RT-PCR technology and Touchdown-PCR, respectively. The cDNA of the BANF1 cloned from Giant Panda and Black Bear is 297 bp in size, containing an open reading frame of 270 bp encoding 89 amino acids. The length of the genomic sequence from Giant Panda is 521 bp, from Black Bear is 536 bp, which were found both to possess 2 exons. Alignment analysis indicated that the nucleotide sequence and the deduced amino acid sequence are highly conserved to some mammalian species studied. Topology prediction showed there is one Protein kinase C phosphorylation site, one Casein kinase II phosphorylation site, one Tyrosine kinase phosphorylation site, one N-myristoylation site, and one Amidation site in the BANF1 protein of the Giant Panda, and there is one Protein kinase C phosphorylation site, one Tyrosine kinase phosphorylation site, one N-myristoylation site, and one Amidation site in the BANF1 protein of the Black Bear. The BANF1 gene can be readily expressed in E. coli. Results showed that the protein BANF1 fusion with the N-terminally His-tagged form gave rise to the accumulation of an expected 14 kD polypeptide that formed inclusion bodies. The expression products obtained could be used to purify the proteins and study their function further.  相似文献   

4.
A major in vivo phosphorylation site of the Epstein-Barr virus nuclear antigen 2 (EBNA-2) was found to be localized at the C-terminus of the protein. In vitro phosphorylation studies using casein kinase 1 (CK-1) and casein kinase 2 (CK-2) revealed that EBNA-2 is a substrate for CK-2, but not for CK-1. The CK-2 specific phosphorylation site was localized in the 140 C-terminal amino acids using a recombinant trpE-C-terminal fusion protein. In a similar experiment, the 58 N-terminal amino acids expressed as a recombinant trpE-fusion protein were not phosphorylated. Phosphorylation of a synthetic peptide corresponding to amino acids 464-476 of EBNA-2 as a substrate led to the incorporation of 0.69 mol phosphate/mol peptide indicating that only one of three potential phosphorylation sites within the peptide was modified. The most likely amino acid residues for phosphorylation by CK-2 are Ser469 and Ser470.  相似文献   

5.
Little is known about the important cellular substrates for protein kinase C and their potential roles in mediating protein kinase C-dependent processes. We evaluated the protein kinase C phosphorylation sites in a major cellular substrate for the kinase, a protein of apparent Mr 80,000 in bovine and 60,000 in chicken tissues; we have recently determined the primary sequences of these proteins and tentatively named them the myristoylated alanine-rich C kinase substrates. The proteins were purified to apparent homogeneity from bovine and chicken brains, phosphorylated with protein kinase C, digested with trypsin, and the phosphopeptides purified and sequenced. Four distinct phosphopeptides were identified from both the bovine and chicken proteins. Two of the phosphorylated serines were contained in the repeated motif FSFKK, one in the sequence LSGF, and one in the sequence SFK. All four sites were contained within a basic domain of 25 amino acids which was identical in the chicken and bovine proteins. All of the sites phosphorylated in the cell-free system appeared to be phosphorylated in intact cells; an additional site may have been present in the proteins from intact cells. The identity of the phosphorylation site domains from two proteins of overall 65% amino acid sequence identity suggests a potential role for this domain in the physiological function of the myristoylated alanine-rich C kinase substrate proteins.  相似文献   

6.
The known amino acid sequences at the two sites on phosphorylase kinase that are phosphorylated by cyclic AMP-dependent protein kinase were extended. The sequences of 42 amino acids around the phosphorylation site on the alpha-subunit and of 14 amino acids around the phosphorylation site on the beta-subunit were shown to be: alpha-subunit Phe-Arg-Arg-Leu-Ser(P)-Ile-Ser-Thr-Glu-Ser-Glx-Pro-Asx-Gly-Gly-His-Ser-Leu-Gly-Ala-Asp-Leu-Met-Ser-Pro-Ser-Phe-Leu-Ser-Pro-Gly-Thr-Ser-Val-Phe(Ser,Pro,Gly)His-Thr-Ser-Lys; beta-subunit, Ala-Arg-Thr-Lys-Arg-Ser-Gly-Ser(P)-VALIle-Tyr-Glu-Pro-Leu-Lys. The sites on histone H2B which are phosphorylated by cyclic AMP-dependent protein kinase in vitro were identified as serine-36 and serine-32. The amino acid sequence in this region is: Lys-Lys-Arg-Lys-Arg-Ser32(P)-Arg-Lys-Glu-Ser36(P)-Tyr-Ser-Val-Tyr-Val- [Iwai, K., Ishikawa, K. & Hayashi, H. (1970) Nature (London) 226, 1056-1058]. Serine-36 was phosphorylated at 50% of the rate at which the beta-subunit of phosphorylase kinase was phosphorylated, and it was phosphorylated 6-7-fold more rapidly than was serine-32. The amino acid sequences when compared with those at the phosphorylation sites of other physiological substrates suggest that the presence of two adjacent basic amino acids on the N-terminal side of the susceptible serine residue may be critical for specific substrate recognition in vivo.  相似文献   

7.
The ribosomal protein L9 (RPL9), a component of the large subunit of the ribosome, has an unusual structure, comprising two compact globular domains connected by an α-helix; it interacts with 23 S rRNA. To obtain information about rpL9 of Ailuropoda melanoleuca (the giant panda) we designed primers based on the known mammalian nucleotide sequence. RT-PCR and PCR strategies were employed to isolate cDNA and the rpL9 gene from A. melanoleuca; these were sequenced and analyzed. We overexpressed cDNA of the rpL9 gene in Escherichia coli BL21. The cloned cDNA fragment was 627 bp in length, containing an open reading frame of 579 bp. The deduced protein is composed of 192 amino acids, with an estimated molecular mass of 21.86 kDa and an isoelectric point of 10.36. The length of the genomic sequence is 3807 bp, including six exons and five introns. Based on alignment analysis, rpL9 has high similarity among species; we found 85% agreement of DNA and amino acid sequences with the other species that have been analyzed. Based on topology predictions, there are two N-glycosylation sites, five protein kinase C phosphorylation sites, one casein kinase II phosphorylation site, two tyrosine kinase phosphorylation sites, three N-myristoylation sites, one amidation site, and one ribosomal protein L6 signature 2 in the L9 protein of A. melanoleuca. The rpL9 gene can be readily expressed in E. coli; it fuses with the N-terminal GST-tagged protein, giving rise to the accumulation of an expected 26.51-kDa polypeptide, which is in good agreement with the predicted molecular weight. This expression product could be used for purification and further study of its function.  相似文献   

8.
Multifunctional protein kinase (MFPK) phosphorylates ATP-citrate lyase on peptide B on two sites, BT and BS, on threonine and serine, respectively, inhibitor 2 on a threonyl residue, and glycogen synthase at sites 2 and 3. The phosphorylation sites BT and BS of ATP-citrate lyase are dependent on prior phosphorylation at site A whereas site A phosphorylation is decreased by prior phosphorylation at sites BT and BS. To study the MFPK recognition sites and the site-site interactions, the amino acid sequences of ATP-citrate lyase peptide B and inhibitor 2 were determined and compared to each other and to glycogen synthase sites 3-5. The sequence of the tryptic peptide containing the two phosphorylation sites of peptide B is -Phe-Leu-Leu-Asn-Ala-Ser-Gly-Ser-Thr-Ser-Thr(P)-Pro-Ala-Pro-Ser(P)-Arg-, and the sequence of the MFPK phosphorylation site of inhibitor 2 is -Ile-Asp-Glu-Pro-Ser-Thr(P)-Pro-Tyr-. This inhibitor 2 site is identical with the site phosphorylated by glycogen synthase kinase 3/FA. These results suggest that at least some of the sites phosphorylated by MFPK (BT of ATP-citrate lyase, Thr 72 of inhibitor 2, and sites 3b and 4 of glycogen synthase) contain a Ser/Thr flanked by a carboxyl-terminal proline. However, as MFPK did not phosphorylate a series of peptides containing the -X-Thr/Ser-Pro-X- sequence, this minimum consensus sequence is not sufficient for phosphorylation by MFPK.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The heavy chain of the HLA-A2 antigen is phosphorylated by cyclic AMP-dependent protein kinase at two serine residues of the intracellular region. Limited proteolysis was performed on purified [32P]HLA-A2 antigens in order to define the sites of phosphorylation. Both of the phosphorylated serine residues are located in the carboxyl terminus of the heavy chain; one is encoded by exon 5, while the other is encoded by exon 6. The phosphoserine encoded by exon 5 is part of the conserved sequence Arg-Arg-Lys-Ser-Ser. This protein sequence contains the proper arrangement of amino acids for recognition and phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase. In the murine class I antigens (H-2), exon 5 encodes a similar sequence of basic residues followed by one intervening residue and a threonine rather than a serine residue in the last amino acid position. A composite figure is presented that compares the carboxyl-terminal sequences of human and murine class I antigens and illustrates the known sites of phosphorylation recognized by various kinases. Each site of phosphorylation in the carboxyl terminus is contained within a conserved protein sequence encoded by one of the three exons. A separation and preservation of unique sites of phosphorylation could explain why there is segmentation in the genomic arrangement of class I molecules.  相似文献   

10.
Osteopontin (OPN) is a multiphosphorylated glycoprotein found in bone and other normal and malignant tissues, as well as in the physiological fluids urine and milk. The present study demonstrates that bovine milk osteopontin is phosphorylated at 27 serine residues and 1 threonine residue. Phosphoamino acids were identified by a combination of amino acid analysis, sequence analysis of S-ethylcysteine-derivatized phosphopeptides, and mass spectrometric analysis. Twenty-five phosphoserines and one phosphothreonine were located in Ser/Thr-X-Glu/Ser(P)/Asp motifs, and two phosphoserines were found in the sequence Ser-X-X-Glu/Ser(P). These sequence motifs are identical with the recognition sequences of mammary gland casein kinase and casein kinase II, respectively. Examination of the phosphorylation pattern revealed that the phosphorylations were clustered in groups of approximately three spanned by unphosphorylated regions of 11-32 amino acids. This pattern is probably of importance in the multiple functions of OPN involving interaction with Ca2+ and inorganic calcium salts. Furthermore, three O-glycosylated threonines (Thr 115, Thr 124, and Thr 129) have been identified in a threonine- and proline-rich region of the protein. Three putative N-glycosylation sites (Asn 63, Asn 85, and Asn 193) are present in bovine osteopontin, but sequence and mass spectrometric analysis showed that none of these asparagines were glycosylated in bovine mammary gland osteopontin. Alignment analysis showed that the majority of the phosphorylation sites in bovine osteopontin as well as all three O-glycosylation sites were conserved in other mammalian sequences. This conservation of serines, even in otherwise less well-conserved regions of the protein, indicates that the phosphorylation of osteopontin at specific sites is essential for the function of the protein.  相似文献   

11.
Occludin is a protein component of the membrane domain of tight junctions, and has been shown to be phosphorylated in vivo in cultured cells and Xenopus laevis embryos. However, nothing is known about the identity of specific occludin kinase(s) and occludin phosphorylation site(s). Furthermore, nothing is known about the interaction of occludin with cingulin, a cytoplasmic plaque component of tight junctions. Here we report the isolation and sequencing of a complete X. laevis occludin cDNA, and experiments aimed at mapping X. laevis occludin in vitro phosphorylation site(s) and characterizing occludin interaction with cingulin. The sequence of Xenopus occludin is homologous to that of occludins from other species, with identities ranging from 41% to 58%. Bacterially expressed domain E of Xenopus occludin (amino acids 247-493) was a good substrate for protein kinase CK2 (stoichiometry 10.8%, Km 8.4 microM) but not for CK1 kinase, protein kinase A, cdc2 kinase, MAP kinase or syk kinase. Residues Thr375 and Ser379 were identified as potential CK2 phosphorylation sites in this region based on sequence analysis. Mutation of Ser379 to aspartic acid or alanine reduced phosphorylation by CK2 by approximately 50%, and double mutation of Ser379 into aspartic acid and Thr375 into aspartic acid essentially abolished phosphorylation. Glutathione S-transferase (GST) pull-down experiments using extracts of Xenopus A6 epithelial cells showed that constructs of GST fused to wild-type and mutant forms of the C-terminal region of X. laevis occludin associate with several polypeptides, and immunoblot analysis showed that one of these polypeptides is cingulin. GST pull-down experiments using in vitro translated, full-length Xenopus cingulin indicated that cingulin interacts directly with the C-terminal region of occludin.  相似文献   

12.
Human cytomegalovirus (HCMV) terminase is composed of subunits pUL56 (130 kDa) and pUL89 (~75 kDa), encoded by the UL56 and UL89 genes. In a recent investigation, we demonstrated that the main ATPase activity is associated with the large terminase subunit pUL56. The protein has two putative ATP-binding sites, which were suggested to be composed of the sequence (amino acids 463–470) for ATP-binding site 1 and YNETFGKQ (amino acids 709–716) for the second site. We now demonstrate using a 1.5 kb fragment encoding the C-terminal half of pUL56 that ATP-binding site 1 is not critical for the function, whereas ATP-binding site 2 is required for the enzymatic activity. Mutation G714A in this protein reduced the ATPase activity to ~65% and the double mutation G714A/K715N showed a reduction up to 75%. However, the substitution of E711A revoked the effect of the substitutions. The functional character of the ATP-binding site was demonstrated by transfer of YNETFGKQLSIACLR (709–723) to glutathione-S-transferase (GST). Interestingly, vanadate, an ATPase inhibitor, has the ability to block the ATPase activity of pUL56 as well as of Apyrase, while the antitumor ATP-mimetic agent geldanamycin, did not affect the ATP-binding of pUL56. Furthermore, in contrast to an inactive control compound, the specific HCMV terminase inhibitor BDCRB showed a partial inhibition of the pUL56-specific ATPase activity. Our results clearly demonstrated that (i) the enzymatic activity of the terminase subunit pUL56 could be inhibited by vanadate, (ii) only the ATP-binding site 2 is critical for the pUL56 function and (iii) glycine G714 is an invariant amino acid.  相似文献   

13.
A rat brain cDNA clone containing an open reading frame encoding the neuron-specific protein synapsin I has been sequenced. The sequence predicts a protein of 691 amino acids with a mol. wt of 73 kd. This is in excellent agreement with the size of rat brain synapsin Ib measured by SDS--polyacrylamide gel electrophoresis. Inspection of the predicted primary structure has revealed the probable sites for synapsin I phosphorylation by the cAMP-dependent and Ca2+/calmodulin-dependent protein kinases. All of the biochemically observed intermediates of synapsin I digestion by collagenase can be verified by inspection of the sequence, and the collagenase-resistant fragment has been defined as the amino-terminal 439 amino acids of the molecule. Predictions of sequence secondary structure and hydrophobicity suggest that a central domain of approximately 270 amino acids may exist as a folded, globular core. The carboxyl-terminal domain of the protein (the region sensitive to collagenase digestion) contains sites for Ca2+/calmodulin-dependent protein kinase phosphorylation. These sites are flanked by three regions of repeating amino acid sequence that are proposed to be the synaptic vesicle-binding domain of synapsin I. This region also shares homology with the actin-binding proteins profilin and villin. The characteristics of the synapsin I sequence do not support extensive homology with the erythrocyte cytoskeletal protein 4.1.  相似文献   

14.
15.
Phosphorylation mediates the nuclear targeting of the maize Rab17 protein   总被引:14,自引:2,他引:12  
The maize abscisic acid-responsive Rab17 protein localizes to the nucleus and cytoplasm in maize cells. In-frame fusion of Rab17 to the reporter protein β-glucuronidase (GUS) directed GUS to the nucleus and cytoplasm in transgenic Arabidopsis thaliana and in transiently transformed onion cells. Analysis of chimeric constructs identified one region between amino acid positions 66–96, which was necessary for targeting GUS to the nucleus. This region contains a serine cluster followed by a putative consensus site for protein kinase CK2 phosphorylation, and a stretch of basic amino acids resembling the simian virus 40 large T antigen-type nuclear localization signal (NLS). Mutation of two basic amino acids in the putative NLS had a weak effect on nuclear targeting in the onion cell system and did not modify the percentage of nuclear fusion protein in the Arabidopsis cells. The mutation of three amino acids in the consensus site for CK2 recognition resulted in the absence of in vitro phosphorylated forms of Rab17 and in a strong decrease of GUS enzymatic activity in isolated nuclei of transgenic Arabidopsis. These results suggest that phosphorylation of Rab17 by protein kinase CK2 is the relevant step for its nuclear location, either by facilitating binding to specific proteins or as a direct part of the nuclear targeting apparatus.  相似文献   

16.
Sequence analysis of the C-terminal cytosolic domain of human and mouse polycystin-1 has identified three RxS consensus protein kinase A (PKA) phosphorylation motifs. GST-fusion proteins containing the full-length and truncated C-terminal cytosolic domain of murine polycystin-1 were phosphorylated in vitro by the purified catalytic subunit of PKA. This identified a sequence of 25 amino acids, immediately downstream of a previously identified heterotrimeric G-protein activation sequence, as the major site of PKA phosphorylation. Phosphorylation of wild-type and alanine substituted synthetic peptides containing this motif demonstrated that alanine substitution of serine 4159 largely eliminated phosphorylation. Mutation of this residue in the fusion protein reduced phosphorylation by about 70%, whereas mutation of the other two conserved phosphorylation motifs had little effect. We conclude that serine 4159 is the major site of PKA phosphorylation in the C-terminal cytosolic domain of murine polycystin-1.  相似文献   

17.
18.
通过对镉超积累苋菜品种天星米铁转运蛋白基因( IRT1)的克隆、序列及表达分析,旨在为植物修复镉污染土壤奠定基础.依据同源克隆原理,通过RACE技术克隆苋菜IRT1基因及生物信息学方法分析基因序列结构和功能,Northern杂交研究基因表达.苋菜IRT1基因cDNA全长1135 bp,包含完整的阅读框,编码322个氨基酸.苋菜IRT1蛋白与已知铁转运蛋白相似性在53.70%-63.04%,具有铁转运蛋白典型的功能结构特征,即N端含有1个信号肽、氨基酸序列上具有完整的ZIP家族功能结构域( Pfam:Zip)和7个跨膜结构域(TMs).苋菜IRT1蛋白还具有1个COG0428超级家族(转运二价金属离子功能)、2个蛋白激酶C磷酸化位点和2个酪蛋白Ⅱ磷酸化位点.低铁胁迫时苋菜根中IRT1基因表达量增加,加镉处理没有改变IRT1基因表达量.因此,推断苋菜IRT1基因是ZIP家族的一员,具有转运二价金属离子功能,将基因在GenBank中注册,序列号为:GU363501,命名为AmIRT1.  相似文献   

19.
采用同源克隆结合RACE法,克隆了繁缕核糖体失活蛋白的全长cDNA,命名为q3(GenBank accession GQ870262)。序列分析结果表明,q3的开放阅读框(ORF)长780 bp,编码259个氨基酸。序列G+C含量为41.5%,与大部分Ⅰ型RIP基因相近。q3编码的蛋白质命名为Q3,理论分子量为28.16 kD,pI为9.44,均与Ⅰ型核糖体失活蛋白相近;包含由23个氨基酸组成的信号肽。功能结构域分析发现,该蛋白含有3个蛋白激酶磷酸化位点、4个络氨酸蛋白激酶磷酸化位点和7个N-肉豆蔻酰化位点。三级结构预测发现,有35.52%的氨基酸残基参与了α螺旋,24.32%的氨基酸残基组成延伸链,40.15%的氨基酸残基随机缠绕其中。基于繁缕及其近缘种核糖体失活蛋白的氨基酸序列构建的系统发育树显示,其结构与经典分类结果基本一致。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号