首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The New Zealand hagfish, Eptatretus cirrhatus, is known to eliminate parts of its chromosomes during embryogenesis from presumptive somatic cells. Electrophoresis of germ line and somatic DNAs of this species, after treatment with the restriction endonucleases DraI and EcoRI, revealed three fragments of DNA that were restricted to the germ line. DNA filter hybridization experiments demonstrated that these fragments were present almost exclusively in the germ line DNA of E. cirrhatus and that they were highly and tandemly repeated. Thus, these DNA fragments appeared to be eliminated during embryogenesis. Moreover, one fragment (a DraI fragment) cross-hybridized with the germ line DNA from other species of hagfish, namely, Eptatretus okinoseanus and Paramyxine atami. Molecular cloning and sequence analysis revealed that the DraI fragment was composed mainly of closely related sequences of 85 bp in length and that this sequence was about 75% homologous to the sequence of EEEo2 (eliminated element of E. okinoseanus 2) which is a germ line-restricted and highly repetitive sequence that was isolated previously from E. okinoseanus. The other two fragments were composed of three families of closely related sequences that were 172 bp long (designated EEEc1), 61 bp long (EEEc2) and 54 bp long (EEEc3). Fluorescence in situ hybridization experiments revealed that each eliminated element was distributed on several chromosomes that are limited to germ cells. EEEo2 was dispersed on 12 C-band-positive chromosomes. EEEc1 and EEEc3 were dispersed on all C-band-positive and several C-band-negative chromosomes. By contrast, EEEc2 was located to terminal regions of several C-band-negative chromosomes. These results suggest that the eliminated chromosomes in hagfish are mosaics of highly repeated, germ line-restricted families of DNA sequences. Received: ██; in revised form: 25 October 1997 / Accepted: ██  相似文献   

2.
The various species of Japanese hagfish, namely, Eptatretus okinoseanus (types A and B), Eptatretus burgeri and Myxine garmani, are known to eliminate a fraction of their chromosomes during early embryogenesis. High molecular weight DNA from germ line cells and somatic cells of these hagfish species was isolated and digested with different restriction enzymes. The DNA fragments were separated by agarose gel electrophoresis. Digestion with BamHI and DraI generated two weak bands and one weak band, respectively, that were estimated to be about 90, and 180 bp and about 90 bp long and were limited to the germ line DNA in both types of E. okinoseanus. DNA filter hybridization experiments showed that the two BamHI fragments and the one DraI fragment were present almost exclusively in the germ line DNA of E. okinoseanus. Thus, these DNA fragments appear to be eliminated during embryogenesis. Moreover, evidence was obtained that these fragments are highly and tandemly repeated. Molecular cloning and sequence analysis revealed that the BamHI fragments are mainly composed of a family of closely related sequences that are 95 bp long (EEEo1, for Eliminated Element of E. okinoseanus 1), and the DraI fragment is composed of another family of closely related sequences that are 85 bp long (EEEo2). The two DNA families account for about 19% of the total eliminated DNA in E. okinoseanus type A. Fluorescence in situ hybridization experiments demonstrated that the two families of DNA are located on several C-band-positive, small chromosomes that are limited to germ cells in both types of E. okinoseanus.by W. Hennig  相似文献   

3.
In some species of hagfish, the phenomenon of chromosome elimination occurs during embryogenesis. However, only two repetitive DNA families are known to be represented in chromosomes that are eliminated from somatic cells of the Japanese hagfish Eptatretus okinoseanus. Using molecular analyses, another germ line-restricted, highly repetitive DNA family has been detected in another Japanese hagfish, Paramyxine atami. The repeat unit of this family, which is 83 bp long, has been designated “EEPa1”, for Eliminated Element of P. atami 1. DNA filter hybridization using EEPa1 as a probe revealed that this family is shared among several species and is conserved in the germline DNA. Although eliminated, repetitive DNA that is shared interspecifically has not been reported in hagfish species, cases of chromatin diminution and chromosome elimination processes have been described previously in other organisms.The patterns and intensities of hybridization signals suggest that members of the repetitive DNA family defined by EEPa1 have undergone concerted molecular evolution. Received: 7 January 1997 / Accepted: 13 May 1997  相似文献   

4.
In some species of hagfish, the phenomenon of chromosome elimination occurs during embryogenesis. However, only two repetitive DNA families are known to be represented in chromosomes that are eliminated from somatic cells of the Japanese hagfish Eptatretus okinoseanus. Using molecular analyses, another germ line-restricted, highly repetitive DNA family has been detected in another Japanese hagfish, Paramyxine atami. The repeat unit of this family, which is 83?bp long, has been designated “EEPa1”, for Eliminated Element of P. atami 1. DNA filter hybridization using EEPa1 as a probe revealed that this family is shared among several species and is conserved in the germline DNA. Although eliminated, repetitive DNA that is shared interspecifically has not been reported in hagfish species, cases of chromatin diminution and chromosome elimination processes have been described previously in other organisms.The patterns and intensities of hybridization signals suggest that members of the repetitive DNA family defined by EEPa1 have undergone concerted molecular evolution.  相似文献   

5.
Germline-restricted DNA has evolved in diverse animal taxa and is found in several vertebrate clades, nematodes, and flies. In these lineages, either portions of chromosomes or entire chromosomes are eliminated from somatic cells early in development, restricting portions of the genome to the germline. Little is known about why germline-restricted DNA has evolved, especially in flies, in which 3 diverse families, Chironomidae, Cecidomyiidae, and Sciaridae, carry germline-restricted chromosomes (GRCs). We conducted a genomic analysis of GRCs in the fungus gnat Bradysia (Sciara) coprophila (Diptera: Sciaridae), which has 2 large germline-restricted “L” chromosomes. We sequenced and assembled the genome of B. coprophila and used differences in sequence coverage and k-mer frequency between somatic and germline tissues to identify GRC sequence and compare it to the other chromosomes in the genome. We found that the GRCs in B. coprophila are large, gene rich, and have many genes with divergent homologs on other chromosomes in the genome. We also found that 2 divergent GRCs exist in the population we sequenced. GRC genes are more similar in sequence to genes from another Dipteran family (Cecidomyiidae) than to homologous genes from Sciaridae. This unexpected finding suggests that these chromosomes likely arose in Sciaridae through hybridization with a related lineage. These results provide a foundation from which to answer many questions about the evolution of GRCs in Sciaridae, such as how this hybridization event resulted in GRCs and what features on these chromosomes cause them to be restricted to the germline.

Germ-line restricted chromosomes are eliminated from all somatic tissues while being retained in the germline. This study of the evolutionary origin of such chromosomes in fungus gnats reveals that they are most similar to a fly of a different family, suggesting an ancient allopolyploidization origin for these peculiar chromosomes.  相似文献   

6.
We isolated a new family of satellite DNA sequences from Hae III- and Eco RI-digested genomic DNA of the Blakistons fish owl ( Ketupa blakistoni). The repetitive sequences were organized in tandem arrays of the 174 bp element, and localized to the centromeric regions of all macrochromosomes, including the Z and W chromosomes, and microchromosomes. This hybridization pattern was consistent with the distribution of C-band-positive centromeric heterochromatin, and the satellite DNA sequences occupied 10% of the total genome as a major component of centromeric heterochromatin. The sequences were homogenized between macro- and microchromosomes in this species, and therefore intraspecific divergence of the nucleotide sequences was low. The 174 bp element cross-hybridized to the genomic DNA of six other Strigidae species, but not to that of the Tytonidae, suggesting that the satellite DNA sequences are conserved in the same family but fairly divergent between the different families in the Strigiformes. Secondly, the centromeric satellite DNAs were cloned from eight Strigidae species, and the nucleotide sequences of 41 monomer fragments were compared within and between species. Molecular phylogenetic relationships of the nucleotide sequences were highly correlated with both the taxonomy based on morphological traits and the phylogenetic tree constructed by DNA-DNA hybridization. These results suggest that the satellite DNA sequence has evolved by concerted evolution in the Strigidae and that it is a good taxonomic and phylogenetic marker to examine genetic diversity between Strigiformes species.An erratum to this article can be found at Communicated by Y. Hiraoka  相似文献   

7.
In eight hagfish species, it is known that chromosome elimination occurs during early embryogenesis, and some highly repetitive DNA families, restricted to germ cells, have been isolated. One of these families, ``EEEo2,' has been isolated as DNA fragments by restriction enzyme analyses from Eptatretus okinoseanus and E. cirrhatus. In this study, EEEo2 sequences were isolated from germline DNA in E. burgeri, Paramyxine sheni, and P. atami using PCR methods. Sequence analysis revealed that these sequences are intraspecifically homogeneous, except in E. burgeri, and are interspecifically conserved with heterogeneity. The intraspecific sequence variability tends to decrease as the copy number increases. These results indicate that EEEo2 has evolved in a concerted manner. Moreover, an ancestral repeating motif consisting of triplicate subrepeats was deduced. These results suggest that EEEo2 arose as an initial amplification of this subrepeat and has evolved by saltatory replication. Phylogenetic analyses suggested the possibility that EEEo2 in E. okinoseanus and E. cirrhatus has been subjected to strong homogenizing forces for concerted evolution, whereas the force is weak in E. burgeri. In addition, EEEo2 in P. sheni and P. atami appear to have been incompletely subjected to these forces. Chromosomal in situ hybridization experiments revealed that EEEo2 sequences were located along almost their entire length of several heterochromatic chromosomes that are restricted to germ cells. These chromosomes are disposed to form a secondary association during the first meiotic metaphases, except in P. sheni. This chromosomal distribution may promote a concerted mode of sequence evolution in both nonhomologous chromosomes and homologous chromosomes and reflect the differential driving forces between species. Received: 17 April 1999 / Accepted: 10 September 1999  相似文献   

8.
The genome of the flesh fly Sarcophaga bullata has been characterized both cytologically and biochemically. S. bullata has a haploid DNA level of 0.61 picograms which is five times larger than the haploid genome size of Drosophila melanogaster. Reassociation kinetics of Sarcophaga DNA shows that its sequence organization is very similar to that of D. melanogaster in having a very large proportion of single copy DNA (81%) and only small amounts of highly and moderately repetitive DNA (9% and 6%, respectively). cRNAs from all three sequence classes were prepared and their cytological distributions on diploid and polytene cells determined by in situ hybridization. The cytological distribution of the highly repetitive probe was found to be restricted to the centromeric heterochromatin of two of the five autosomes and this sequence class was also found to be markedly underreplicated in polytene foot-pad cells. No highly repetitive DNA was localized on either of the sex chromosomes, but only on the two large centromeric regions of chromosomes C and E. Moderately repetitive DNA was found uniformly distributed on all of the autosomes in both testis and polytene foot-pad squashes. As in the case of the highly repetitive sequence probe, no moderately repetitive DNA was detected on either the X or Y chromosomes. Moderately repetitive DNA in Sarcophaga was also shown to have the Drosophila type pattern of sequence interspersion with a moderately repetitive element of 5,000 nucleotides adjacent to a unique element of greater than 10,000 nucleotides. The Sarcophaga genome is the largest for which this type of interspersion has so far been demonstrated.  相似文献   

9.
During the early cleavage divisions in some Ascarids, parts of the chromosomes are eliminated from the somatic blastomeres (chromatin diminution, Boveri, 1887) while the chromosomes in the germ line cells maintain their integrity. To characterize the germ line and soma genome, DNA was isolated from gametes and embryonic somatic cells of two Ascarid species,Parascaris equorum var. univalens andAscaris suum. It was shown that the germ line limited DNAs of these species have the same density and almost identical reassociation kinetics: in CsCl the predominant component of the germ line limited DNA ofP. equorum andA. suum has the buoyant density of 1.697g/cm3, while soma DNA of both species bands at 1.700 g/cm3. InP. equorum there is a small additional germ line limited satellite DNA component with the density of 1.690 g/cm3, identical to that of mitochondrial DNA of both organisms. Comparison of the reassociation kinetics of germ line and soma DNA demonstrates for both species that the eliminated DNA sequences are highly repetitive. In contrast to these similarities between the germ line limited DNAs ofP. equorum andA. suum the analysis of their base composition revealed differences (40% guanine plus cytosine inP. equorum and 36% inA. suum). The only very fast reassociating DNA sequences which we could isolate from soma DNA was demonstrated to be foldback DNA. The reassociation kinetics of totalA. suum soma DNA was investigated by hydroxylapatite chromatography. Least squares analysis of the data revealed about 10% of intermediate repetitive DNA sequences. Their interspersion between single copy DNA sequences was analyzed by comparing the reassociation kinetics of DNA fragments 0.35 and 7.2 kilobases long. Thus the DNA sequence arrangement ofAscaris does not follow the short period interspersion pattern observed in most organism.  相似文献   

10.
The longitudinal differentiation of metaphase chromosomes of the Indian muntjac was studied by digestion with restriction enzymes, in situ hybridization with cloned DNA probes and distamycin A plus DAPI (4-6-diamidino-2-phenylindole) fluorescence staining. The centromeric regions of chromosomes 3 and 3 + X of a male Indian muntjac cell line were distinct from each other and different from those of other chromosomes. Digestion with a combination of EcoRI* and Sau3A revealed a pattern corresponding to that of C-banding. Digestion with AluI, EcoRII or RsaI yielded a band specific to the centromeric region only in chromosomes 3 and 3 + X. Furthermore, HinfI digestion yielded only a band at the centromeric region of chromosome 3, whereas DA-DAPI staining revealed a single band limited to the extreme end of the C-band heterochromatin of the short arm of 3 + X. These results suggest that centromeres of Indian muntjac chromosomes contain at least four different types of repetitive DNA. Such diversity in heterochromatin was also confirmed by in situ hybridization using specific DNA probes isolated and cloned from highly repetitive DNA families. Heterozygosity between chromosome homologs was revealed by restriction enzyme banding. Evidence is presented for the presence of nucleolus organizer regions (NORs) on the long arm of chromosome 1 as well as on the secondary constrictions of 3 and 3 + X.Abbreviations DA distamycin A - DAPI 4-6-diamidino-2-phenylindole - NOR(s) nucleolus organizer region(s) - PBS phosphate-buffered saline - PI propidium iodide  相似文献   

11.
A repetitive element from the hypotrichous ciliate Stylonychia lemnae was characterized by restriction and hybridization analysis. This repetitive element is present in about 5,000–7,000 copies per haploid genome in the micronucleus and the macronuclear anlagen. Its DNA sequence is very conserved, but the length of the repetitive sequence blocs is variable. In some cases, it is associated with telomeric sequences and macronucleus–homologous sequences. Restriction analysis of genomic micronuclear and macronuclear anlagen DNA and in situ hybridization showed that the repetitive sequences are amplified during the formation of polytene chromosomes. They are localized in many bands of the polytene chromosomes and are eliminated during the degradation of the polytene chromosomes. Possible functions of the repetitive sequences during macronuclear differentiation are discussed. Dev. Genet. 21:201–211, 1997.© 1997 Wiley-Liss, Inc.  相似文献   

12.
Summary A set of species-specific repetitive DNA sequences was isolated from Lolium multiflorum and Festuca arundinacea. The degree of their species specificity as well as possible homologies among them were determined by dot-blot hybridization analysis. In order to understand the genomic organization of representative Lolium and Festuca-specific repetitive DNA sequences, we performed Southern blot hybridization and in situ hybridization to metaphase chromosomes.Southern blot hybridization analysis of eight different repetitive DNA sequences of L. multiflorum and one of F. arundinacea indicated either tandem and clustered arrangements of partially dispersed localization in their respective genomes. Some of these sequences, e.g. LMB3, showed a similar genomic organization in F. arundinacea and F. pratensis, but a slightly different organization and degree of redundancy in L. multiflorum. Clones sequences varied in size between 100 bp and 1.2 kb. Estimated copy number in the corresponding haploid genomes varied between 300 and 2×104. Sequence analysis of the highly species-specific sequences from plasmids pLMH2 and pLMB4 (L. multiflorum specific) and from pFAH1 (F. arundinacea specific) revealed some internal repeats without higher order. No homologies between the sequences or to other repetitive sequences were observed. In situ hybridization with these latter sequences to metaphase chromosomes from L. multiflorum, F. arundinacea and from symmetric sexual Festulolium hybrid revealed their relatively even distribution in the corresponding genomes. The in situ hybridization thus also allowed a clearcut simple identification of parental chromosomes in the Festulolium hybrid.The potential use of these species-specific clones as hybridization probes in quantitative dot-blot analysis of the genomic make-up of Festulolium (sexual and somatic) hybrids is also demonstrated.Abbreviations bp Base pair (s) - CMA chromomycin A3 - DAPI 4,6-diamidino-2-phenylindole - IPTG isopropyl -D-thio-galactopyranoside - kb kilobase pair(s) - NBT nitroblue tetrazolium chloride - X-gal 5-bromo-4-chloro-3-inonyl -D-galactopyranoside  相似文献   

13.
It is shown by isopycnic density gradient centrifugation that the DNAs of the sibling species Drosophila hydei, Drosophila neohydei and Drosophila pseudoneohydei differ regarding the numbers and proportions of satellite DNA bands. An overwhelming proportion of all repetitive nucleotide sequences of the DNA is contained in these satellite fractions. The majority of the satellites are species specific despite the close phylogenetic and cytological relationship between the three species studied. — By in situ hybridization experiments it is demonstrated that the various satellite sequences occupy different positions within the chromosomes. All types of localization patterns, from a wide spread occurrence in all chromosomes to an apparent restriction to kinetochore regions of single chromosomes, have been observed. Main band DNA, on the other hand, in its hybridization behavior reflects the DNA distribution according to the banding pattern in giant chromosomes. Generally satellite sequences seem to be included in -heterochromatic chromosome regions but no relation to the heterochromatin of the Y-chromosome was found. — Renaturation studies support various evidence that satellite sequences occur in tandemly repetitious units. At least some of this repetitious material seems to be linked to non-satellite DNA sequences or to DNA of other satellites.  相似文献   

14.
Centromeric repetitive DNA sequences in the genus Brassica   总被引:1,自引:0,他引:1  
Representatives of two major repetitive DNA sequence families from the diploid Brassica species B. campestris and B. oleracea were isolated, sequenced and localized to chromosomes by in situ hybridization. Both sequences were located near the centromeres of many chromosome pairs in both diploid species, but major sites of the two probes were all on different chromosome pairs. Such chromosome specificity is unusual for plant paracentromeric repetitive DNA. Reduction of stringency of hybridization gave centromeric hybridization sites on more chromosomes, indicating that there are divergent sequences present on other chromosomes. In tetraploid species derived from the diploids, the number of hybridization sites was different from the sum of the diploid ancestors, and some chromosomes had both sequences, indicating relatively rapid homogenization and copy number evolution since the origin of the tetraploid species.  相似文献   

15.
. In the chironomid Acricotopus lucidus, parts of the genome, the germ line-limited chromosomes, are eliminated from the future soma cells during early cleavage divisions. A highly repetitive, germ line-specific DNA sequence family was isolated, cloned and sequenced. The monomers of the tandemly repeated sequences range in size from 175 to 184 bp. Analysis of sequence variation allowed the further classification of the germ line-restricted repetitive DNA into two related subfamilies, A and B. Fluorescence in situ hybridization to gonial metaphases demonstrated that the sequence family is highly specific for the paracentromeric heterochromatin of the germ line-limited chromosomes. Restriction analysis of genomic soma DNA of A. lucidus revealed another tandem repetitive DNA sequence family with monomers of about 175 bp in length. These DNA elements are found only in the centromeric regions of all soma chromosomes and one exceptional germ line-limited chromosome by in situ hybridization to polytene soma chromosomes and gonial metaphase chromosomes. The sequences described here may be involved in recognition, distinction and behavior of soma and germ line-limited chromosomes during the complex chromosome cycle in A. lucidus and may be useful for the genetic and cytological analysis of the processes of elimination of the germ line-limited chromosomes in the soma and germ line. Received: 12 April 1997; in revised form 26 June 1997 / Accepted: 29 June 1997  相似文献   

16.
Intermediate repetitive sequences of Plethodon cinereus which comprised about 30% of the genomic DNA were isolated and iodinated with 125I. About 5% of the 125I-repetitive fraction hybridized with a large excess of DNA from P. dunni at Cot 20. About half of the 125I-DNA in the hybrids was resistant to extensive digestion with S-1 nuclease. The average molecular size of the S-1 nuclease-resistant fraction was about 100 nucleotide pairs. The melting temperature of the S-1 nuclease-resistant fraction was about 2° lower than that of the corresponding fraction made with P. cinereus DNA. These results are taken to indicate the presence in the genomes of P. cinereus and P. dunni of evolutionarily stable common repetitive sequences. The average frequency of repetition of the common repetitive sequences is about 6,000 × in both species. The common repetitive fraction is also present in the genomes of other species of Plethodon, although the general populations of intermediate repetitive sequences are markedly different from one species to another. The cinereus-dunni common repetitive sequences could not be detected in plethodontids belonging to different tribes, nor in more distantly related amphibians. The profiles of binding of the common repetitive sequences to CsCl or Cs2SO4-Ag+ density gradient fractions of P. dunni DNA suggested that these sequences consisted of heterogeneous components with respect to base compositions, and that they did not include large amounts of the genes for ribosomal RNA, 5S RNA, 4S RNA, or histone messenger RNA. — In situ hybridization of the 3H-labelled intermediate repetitive sequences of P. cinereus to male meiotic chromosomes of the same species gave autoradiographs after an exposure of seven days showing all 14 chromosomes labelled. The pattern of labelling appeared not to be random, but was impossible to analyse on account of the irregular shapes and different degrees of stretching of diplotene and prometaphase chromosomes. In situ hybridization of the same sequences to meiotic chromosomes from P. dunni gave autoradiographs after 60 d exposure in which all chromosomes were labelled. These heterologous in situ hybrids can only have involved the common repetitive sequences.  相似文献   

17.
Prochilodus lineatus, an abundant species in the Mogi-Guaçu river basin, represents a large part of the region's fishing potential. Karyotypic analyses based on classic cytogenetic techniques have revealed the presence of 54 meta-submetacentric type chromosomes, together with the occurrence of small supernumerary chromosomes with intra and interindividual variations. This paper describes the genomic organization of two families of satellite DNA in the P. lineatus genome. The chromosomal localization these two repetitive DNA families through fluorescence in situ hybridization (FISH) demonstrated that the SATH1 satellite DNA family, composed of approximately 900 bp, was located in the pericentromeric region of a group of chromosomes of the standard complement, as well as on all the B chromosomes. The SATH2 satellite family has a monomeric unit of 441 bp and was located in the pericentromeric regions of some chromosomes of the standard complement, but was absent in the B chromosomes. Double FISH analyses showed that these two families participate jointly in the pericentromeric organization of several chromosomes of this species. The data obtained in this study support the hypothesis that the B chromosomes derive from chromosomes of the standard complement, which are carriers of the SATH1 satellite DNA.  相似文献   

18.
Genotoxic air pollution is ubiquitous in urban and industrial areas. A variety of studies has linked human exposure to air pollution with a number of different somatic cell endpoints including cancer. However, the potential for inducing mutations in the human germline remains unclear. Sentinel animal studies of germline mutations at tandem-repeat loci (specifically minisatellites and expanded simple tandem repeats) have recently provided proof of principle that germline mutations can be induced in vertebrates (birds and mice) by air pollution under ambient conditions. Although humans may also be susceptible to induced germline mutations in polluted areas, uncertainties regarding causative agents, doses, and mutational mechanisms at repetitive DNA loci currently preclude extrapolation from animal data to the evaluation of human risk. Nevertheless, several recent studies have linked air pollution exposure to DNA damage in human sperm, indicating that our germ cells are not impervious to the genotoxic effects of air pollution. Thus, both sentinel animal and human studies have raised the possibility that ambient air pollution may increase human germline mutation rates, especially at repetitive DNA loci. Given that some human genetic conditions appear to be modulated by length mutations at tandem-repeat loci (e.g. HRAS1 cancers, type 1 diabetes, etc.), there is an urgent need for extensive study in this area. Research should be primarily focused upon: (1) the direct measurement of mutation frequencies at repetitive DNA loci in human male germ cells as a function of air pollution exposure, (2) large-scale epidemiology studies of inherited disorders and tandem-repeat associated genetic conditions and air pollution, and (3) the characterization of mutational mechanisms at hypervariable tandem-repeat loci.
Christopher M. SomersEmail:
  相似文献   

19.
M. R. Köhler  P. H. Vogt 《Chromosoma》1994,103(5):324-330
Cytogenetic analysis of aberrant human Y chromosomes was done by fluorescence in situ hydbridization (FISH) with Y specific repetitive DNA probes. It revealed an interstitial deletion of different DNA blocks in two dicentric chromosome structures. One deletion includes the total alphoid DNA structure of one centromeric region. The second deletion includes the total repetitive DYZ5 DNA structure in the pericentromeric region of one short Y arm. Both dicentric Y chromosomes were iso(Yp) chromosomes with break and fusion point located in Yq11, the euchromatic part of the long Y arm. Their phenotypic appearance was abnormal, resembling small monocentric Yq-chromosomes in metaphase plates. Mosaic cell lines, usually included in karyotypes with dicentric Y chromosomes, were not observed. It is assumed that both deletion events suppress the kinetochore activity in one Y centromeric region and thus stabilize its dicentric structure. Local interstitial deletion events had not been described in dicentric human Y chromosomes, but are common in dicentric yeast chromosomes. This raises the question of whether deletion events in dicentric human chromosomes are rare or restricted to the Y chromosome or also represent a general possibility for stabilization of a dicentric chromosome structure in human.  相似文献   

20.
Summary We have previously reported production of somatic hybrids between B. oleracea and B. campestris by fusion of B. oleracea protoplasts with X-irradiated B. campestris protoplasts, in order to transfer a part of the B. campestris genome into B. Oleracea. Our previous analysis of morphology, chromosome number, and isozyme patterns of the hybrids suggested that they are asymmetric in nature. To obtain further evidence for the asymmetric nature of the hybrids, we isolated B. campestris-specific repetitive sequences and used them for in situ hybridization of the chromosomes of the hybrids. The repetitive DNA probes could specifically identify 8 out of 20 chromosomes of the B. campestris genome, and analysis of the hybrids indicates that 1–3 chromosomes of B. campestris are lacking in all five hybrids examined, giving clear evidence for the asymmetric nature of the hybrids. Furthermore, in situ hybridization revealed that some of the abnormal chromosomes observed in the hybrids are generated by rearrangements of B. Campestris chromosomes caused by X-irradiation. Altogether, our study indicates that in situ hybridization using species-specific repetitive sequences is a useful tool to analyze chromosomal compositions of various types of hybrids obtained by cell fusion or conventional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号