首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a new random array format together with a decoding scheme for targeted multiplex digital molecular analyses. DNA samples are analyzed using multiplex sets of padlock or selector probes that create circular DNA molecules upon target recognition. The circularized DNA molecules are amplified through rolling-circle amplification (RCA) to generate amplified single molecules (ASMs). A random array is generated by immobilizing all ASMs on a microscopy glass slide. The ASMs are identified and counted through serial hybridizations of small sets of tag probes, according to a combinatorial decoding scheme. We show that random array format permits at least 10 iterations of hybridization, imaging and dehybridization, a process required for the combinatorial decoding scheme. We further investigated the quantitative dynamic range and precision of the random array format. Finally, as a demonstration, the decoding scheme was applied for multiplex quantitative analysis of genomic loci in samples having verified copy-number variations. Of 31 analyzed loci, all but one were correctly identified and responded according to the known copy-number variations. The decoding strategy is generic in that the target can be any biomolecule which has been encoded into a DNA circle via a molecular probing reaction.  相似文献   

2.
Camenisch U  Dip R  Vitanescu M  Naegeli H 《DNA Repair》2007,6(12):1819-1828
The presumed DNA-binding cleft of xeroderma pigmentosum group A (XPA) protein, a key regulatory subunit of the eukaryotic nucleotide excision repair complex, displays a distinctive array of 6 positively charged amino acid side chains. Here, the molecular function of these closely spaced electropositive residues has been tested by systematic site-directed mutagenesis. After the introduction of single amino acid substitutions, the mutants were probed for protein-DNA interactions in electrophoretic mobility shift and photochemical crosslinking assays. This analysis led to the identification of a critical hot-spot for DNA substrate recognition composed of two neighboring lysines at codons 141 and 179 of the human XPA sequence. The replacement of other basic side chains in the DNA interaction domain conferred more moderate defects of substrate binding. When the function of XPA was tested as a fusion product with either mCherry or green-fluorescent protein, a glutamate substitution of one of the positively charged residues at positions 141 and 179 was sufficient to decrease DNA repair activity in human fibroblasts. Thus, the removal of a single cationic side chain abolished DNA-binding activity and significant excision repair defects could be induced by single charge inversions on the XPA surface, indicating that this molecular sensor participates in substrate recognition by monitoring the electrostatic potential of distorted DNA repair sites.  相似文献   

3.
Gene synthesis is frequently used in modern molecular biology research either to create novel genes or to obtain natural genes when the synthesis approach is more flexible and reliable than cloning. DNA chemical synthesis has limits on both its length and yield, thus full-length genes have to be hierarchically constructed from synthesized DNA fragments. Gibson Assembly and its derivatives are the simplest methods to assemble multiple double-stranded DNA fragments. Currently, up to 12 dsDNA fragments can be assembled at once with Gibson Assembly according to its vendor. In practice, the number of dsDNA fragments that can be assembled in a single reaction are much lower. We have developed a rational design method for gene construction that allows high-number dsDNA fragments to be assembled into full-length genes in a single reaction. Using this new design method and a modified version of the Gibson Assembly protocol, we have assembled 3 different genes from up to 45 dsDNA fragments at once. Our design method uses the thermodynamic analysis software Picky that identifies all unique junctions in a gene where consecutive DNA fragments are specifically made to connect to each other. Our novel method is generally applicable to most gene sequences, and can improve both the efficiency and cost of gene assembly.  相似文献   

4.
The design of a dsDNA-sensitive fluorescent bioconjugate capable of targeting a specific DNA sequence with high efficiency is described. The bioconjugate has the molecular recognition features of the polypeptide from a DNA-binding protein and the dsDNA-dependent fluorescence of an intercalating dye. The DNA sequence selectivity of the probe was characterized, as were the changes in photophysical properties of the dye upon covalent linkage to the peptide to assess whether such bioconjugates could function as molecular probes of gene sequences. The oxazole yellow-peptide bioconjugate exhibits DNA recognition and binding affinity comparable to the native Hin recombinase protein. Examination of photophysical effects to dye conjugation indicates a negligible affect on the fluorescence quantum yield. Fluorescence studies indicate this molecular probe is useful to determine the presence of a given DNA target sequence and gives negligible fluorescence in the absence of a given target site. Using the synthetic route described here, bioconjugates could be designed using different combinations of DNA recognition polypeptides and cyanine dyes to generate an array of sequence specific and wavelength specific probes.  相似文献   

5.
6.

Background

DNA sequence diversity within the human genome may be more greatly affected by copy number variations (CNVs) than single nucleotide polymorphisms (SNPs). Although the importance of CNVs in genome wide association studies (GWAS) is becoming widely accepted, the optimal methods for identifying these variants are still under evaluation. We have previously reported a comprehensive view of CNVs in the HapMap DNA collection using high density 500 K EA (Early Access) SNP genotyping arrays which revealed greater than 1,000 CNVs ranging in size from 1 kb to over 3 Mb. Although the arrays used most commonly for GWAS predominantly interrogate SNPs, CNV identification and detection does not necessarily require the use of DNA probes centered on polymorphic nucleotides and may even be hindered by the dependence on a successful SNP genotyping assay.

Results

In this study, we have designed and evaluated a high density array predicated on the use of non-polymorphic oligonucleotide probes for CNV detection. This approach effectively uncouples copy number detection from SNP genotyping and thus has the potential to significantly improve probe coverage for genome-wide CNV identification. This array, in conjunction with PCR-based, complexity-reduced DNA target, queries over 1.3 M independent NspI restriction enzyme fragments in the 200 bp to 1100 bp size range, which is a several fold increase in marker density as compared to the 500 K EA array. In addition, a novel algorithm was developed and validated to extract CNV regions and boundaries.

Conclusion

Using a well-characterized pair of DNA samples, close to 200 CNVs were identified, of which nearly 50% appear novel yet were independently validated using quantitative PCR. The results indicate that non-polymorphic probes provide a robust approach for CNV identification, and the increasing precision of CNV boundary delineation should allow a more complete analysis of their genomic organization.  相似文献   

7.
DNA arrays and chips are powerful new tools for gene expression profiling. Current arrays contain hundreds or thousands of probes and large scale sequencing and screening projects will likely lead to the creation of global genomic arrays. DNA arrays and chips will be key in understanding how genes respond to specific changes of environment and will also greatly assist in drug discovery and molecular diagnostics. To facilitate widespread realization of the quantitative potential of this approach, we have designed procedures and software which facilitate analysis of autoradiography films with accuracy comparable to phosphorimaging devices. Algorithms designed for analysis of DNA array autoradiographs incorporate 3-D peak fitting of features on films and estimation of local backgrounds. This software has a flexible grid geometry and can be applied to different types of DNA arrays, including custom arrays.  相似文献   

8.
An array of nano-channels was fabricated from silicon based semiconductor materials to stretch long, native dsDNA. Here we present a labeling scheme in which it is possible to identify the location of specific sequences along the stretched DNA molecules. The scheme proceeds by first using the strand displacement activity of the Vent (exo-) polymerase to generate single strand flaps on nicked dsDNA. These single strand flaps are hybridized with sequence specific fluorophore-labeled probes. Subsequent imaging of the DNA molecules inside a nano-channel array device allows for quantitative identification of the location of probes. The highly efficient DNA hybridization on the ss-DNA flaps is an excellent method to identify the sequence motifs of dsDNA as it gives us unique ability to control the length of the probe sequence and thus the frequency of hybridization sites on the DNA. We have also shown that this technique can be extended to a multi color labeling scheme by using different dye labeled probes or by combining with a DNA- polymerase-mediated incorporation of fluorophore-labeled nucleotides on nicking sites. Thus this labeling chemistry in conjunction with the nano-channel platform can be a powerful tool to solve complex structural variations in DNA which is of importance for both research and clinical diagnostics of genetic diseases.  相似文献   

9.
A partially overlapping population of random sequence 60mer DNA molecules consisting of many concatamers of varied lengths was spatially separated in one and two dimensions by electrophoresis in polyacrylamide and transferred to nitrocellulose membranes. The spatially separated library serves as a potential sensor interface on which many different molecular recognition events or target analyte-binding patterns may emerge, thereby theoretically representing a “universal sensor” surface. The separated DNA library has been referred to as a DNA combinatorial array recognition surface or “CARS.” After UV baking and various fluorescence staining or fluorescent probe interactions, the one-dimensional (1-D) and 2-D membrane-bound CARS were digitally photographed and subjected to image analysis with National Institutes of Health Image-Java software. Image analysis demonstrated relatively consistent and more similar spatial fluorescence patterns within CARS analyte treatment groups but noteworthy pattern differences before and after analyte addition and between different analyte treatments. Taken together, these data suggest a potential role for CARS as a novel, inexpensive, self-assembling universal molecular recognition surface that could be coupled to sophisticated Bayesian or other pattern recognition algorithms to classify analytes or make specific identifications, much like the senses of smell or taste.  相似文献   

10.
Triplex DNA has become one of the most useful recognition motifs in the design of new molecular biology tools, therapeutic agents and sophisticated DNA‐based nanomaterials because of its direct recognition of natural double‐stranded DNA. In this paper, we developed a sensitive and microscale method to study the formation and stability characterization of triplex DNA using fluorescence correlation spectroscopy (FCS). The principle of this method is mainly based on the excellent capacity of FCS for sensitively distinguishing between free single‐strand DNA (ssDNA) fluorescent probes and fluorescent probe–double‐strand DNA (dsDNA) hybridized complexes. First, we systematically investigated the experimental conditions of triplex DNA formation. Then, we evaluated the equilibrium association constants (Ka) under different ssDNA probe lengths, composition and pH. Finally, we used FCS to measure the hybridization fraction of a 20‐mer perfectly matched ssDNA probe and three single‐base mismatched ssDNA probes with 146‐mer dsDNA. Our data illustrated that FCS is a useful tool for the direct determination of the thermodynamic parameters of triplex DNA formation and discrimination of a single‐base mismatch of triplex DNA without denaturation. Compared with current methods, our method is characterized by high sensitivity, good universality and small sample and reagent requirements. More importantly, our method has the potential to become a platform for triplex DNA research in vitro. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Molecular-beacon-based array for sensitive DNA analysis   总被引:13,自引:0,他引:13  
Yao G  Tan W 《Analytical biochemistry》2004,331(2):216-223
Molecular beacon (MB) DNA probes provide a new way for sensitive label-free DNA/protein detection in homogeneous solution and biosensor development. However, a relatively low fluorescence enhancement after the hybridization of the surface-immobilized MB hinders its effective biotechnological applications. We have designed new molecular beacon probes to enable a larger separation between the surface and the surface-bound MBs. Using these MB probes, we have developed a DNA array on avidin-coated cover slips and have improved analytical sensitivity. A home-built wide-field optical setup was used for imaging the array. Our results show that linker length, pH, and ionic strength have obvious effects on the performance of the surface-bound MBs. The fluorescence enhancement of the new MBs after hybridization has been increased from 2 to 5.5. The MB-based DNA array could be used for DNA detection with high sensitivity, enabling simultaneous multiple-target bioanalysis in a variety of biotechnological applications.  相似文献   

12.
A new microarray system has been developed for gene expression analysis using cationic gold nanoparticles with diameters of 250 nm as a target detection reagent. The approach utilizes nonlabeled target molecules hybridizing with complementary probes on the array, followed by incubation in a colloidal gold solution. The hybridization signal results from the precipitation of nanogold particles on the hybridized spots due to the electrostatic attraction of the cationic gold particles and the anionic phosphate groups in the target DNA backbone. In contrast to conventional fluorescent detection, this nanoparticle-based detection system eliminates the target labeling procedure. The visualization of hybridization signals can be accomplished with a flatbed scanner instead of a confocal laser scanner, which greatly simplifies the process and reduces the cost. The sensitivity is estimated to be less than 2 pg of DNA molecules captured on the array surface. The signal from hybridized spots quantitatively represents the amount of captured target DNA and therefore permits quantitative gene expression analysis. Cross-array reproducibility is adequate for detecting twofold or less signal changes across two microarray experiments.  相似文献   

13.
Size polydispersity of immature human immunodeficiency virus type 1 (HIV-1) particles represents a challenge for traditional methods of biological ultrastructural analysis. An in vitro model for immature HIV-1 particles constructed from recombinant Gag proteins lacking residues 16-99 and the p6 domain assembled around spherical nanoparticles functionalized with DNA. This template-directed assembly approach led to a significant reduction in size polydispersity and revealed previously unknown structural features of immature-like HIV-1 particles. Electron microscopy and image reconstruction of these particles suggest that the Gag shell formed from different protein regions that are connected by a “scar”—an extended defect connecting the edges of two continuous, regularly packed protein layers. Thus, instead of a holey protein array, the experimental model presented here appears to consist of a continuous array of ∼ 5000 proteins enveloping the core, in which regular regions are separated by extended areas of disorder.  相似文献   

14.
Reversibly switchable DNA nanocompartment on surfaces   总被引:3,自引:1,他引:2  
Biological macromolecules have been used to fabricate many nanostructures, biodevices and biomimetics because of their physical and chemical properties. But dynamic nanostructure and biomachinery that depend on collective behavior of biomolecules have not been demonstrated. Here, we report the design of DNA nanocompartments on surfaces that exhibit reversible changes in molecular mechanical properties. Such molecular nanocompartments are used to encage molecules, switched by the collective effect of Watson–Crick base-pairing interactions. This effect is used to perform molecular recognition. Furthermore, we found that ‘fuel’ strands with single-base variation cannot afford an efficient closing of nanocompartments, which allows highly sensitive label-free DNA array detection. Our results suggest that DNA nanocompartments can be used as building blocks for complex biomaterials because its core functions are independent of substrates and mediators.  相似文献   

15.
In this article, we report a novel method of biomolecular recognition based on the molecular charge contact (MCC). As one of the MCC biosensing method, the interaction between DNA-coated magnetic beads and a silicon-based semiconductor, an ion-sensitive field effect transistor (ISFET) could be detected for DNA molecular recognition events using the principle of the field effect, which enables detecting ionic or molecular charges. After DNA-coated magnetic beads had been introduced and brought in contact with the gate surface by a magnet, the threshold voltage of the ISFET was shifted in the positive direction by immobilization, hybridization and extension reaction of DNA molecules on magnetic beads. This positive shift was based on the increase in negative charges of the phosphate groups in them. Then, the ISFET device could be reused a couple of dozen times continuously and cost-effectively because the oligonucleotide probes were tethered to the magnetic beads, but this was not done directly on the gate surface of the ISFET. Moreover, the MCC biosensing method enabled discrimination of a single nucleotide polymorphism. By creating an interaction of magnetic beads with the semiconductor, we can expect enhancement of the reaction efficiency in a solution and reuse of the device by separating the reaction field from the sensing substrate.  相似文献   

16.
Two attractive features of ELISA are the specificity of antibody-antigen recognition and the sensitivity achieved by enzymatic amplification. This report describes the development of a non-enzymatic molecular recognition platform adaptable to point-of-care clinical settings and field detection of biohazardous materials. This filament-antibody recognition assay (FARA) is based on circumferential bands of antibody probes coupled to a 120 microm diameter polyester filament. One advantage of this design is that automated processing is achieved by sequential positioning of filament-coupled probes through a series of 25-60 microL liquid filled microcapillary chambers. This approach was evaluated by testing for the presence of M13KO7 bacterial virus using anti-M13KO7 IgG(1) monoclonal antibody coupled to a filament. Filament motion first positioned the antibodies within a microcapillary tube containing a solution of M13KO7 virus before moving the probes through subsequent chambers, where the filament-coupled probes were washed, exposed to a fluorescently labeled anti-M13K07 antibody, and washed again. Filament fluorescence was then measured using a flatbed microarray scanner. The presence of virus in solution produced a characteristic increase in filament fluorescence only in regions containing coupled antibody probes. Even without the enzymatic amplification of a typical ELISA, the presence of 8.3 x 10(8) virus particles produced a 30-fold increase in fluorescence over an immobilized negative control antibody. In an ELISA comparison study, the filament-based approach had a similar lower limit of sensitivity of approximately 1.7 x 10(7) virus particles. This platform may prove attractive for point-of-care settings, the detection of biohazardous materials, or other applications where sensitive, rapid, and automated molecular recognition is desired.  相似文献   

17.
Analyses of complex microbial communities are becoming increasingly important. Bottlenecks in these analyses, however, are the tools to actually describe the biodiversity. Novel protocols for a DNA array based analyzes of microbial communities are presented. In these protocols, the specificity obtained by sequence-specific labeling of DNA probes is combined with the possibility of detecting several different probes simultaneously by DNA array hybridization. The gene encoding 16S ribosomal RNA was chosen as the target in these analyses. This gene contains both universally conserved regions, and regions with relatively high variability. The universally conserved regions are used for PCR amplification primers, while the variable regions are used for the specific probes. Arrays prepared on positively charged nylon membranes and coated glass slides were compared. The advantage of using membranes is that chromogenic signal amplification can be used for the detection. Furthermore, the chromogenic detection does not require any sophisticated equipment. The advantage of the glass slides is that multiple fluorescence colors can be detected simultaneously, and that internal controls can be used for normalization. This approach is also suited for high throughput screenings.  相似文献   

18.
To date real-time quantitative PCR and gene expression microarrays are the methods of choice for quantification of nucleic acids. Herein, we described a unique fluorescence resonance energy transfer-based microarray platform for real-time quantification of nucleic acid targets that combines advantages of both and reduces their limitations. A set of 3′ amino-modified TaqMan probes were designed and immobilized on a glass slide composing a regular microarray pattern, and used as probes in the consecutive PCR carried out on the surface. During the extension step of the PCR, 5′ nuclease activity of DNA polymerase will cleave quencher dyes of the immobilized probe in the presence of nucleic acids targets. The increase of fluorescence intensities generated by the change in physical distance between reporter fluorophore and quencher moiety of the probes were collected by a confocal scanner. Using this new approach we successfully monitored five different pathogenic genomic DNAs and analyzed the dynamic characteristics of fluorescence intensity changes on the TaqMan probe array. The results indicate that the TaqMan probe array on a planar glass slide monitors DNA targets with excellent specificity as well as high sensitivity. This set-up offers the great advantage of real-time quantitative detection of DNA targets in a parallel array format.  相似文献   

19.
Optimal reconstruction of a sequence from its probes.   总被引:4,自引:0,他引:4  
An important combinatorial problem, motivated by DNA sequencing in molecular biology, is the reconstruction of a sequence over a small finite alphabet from the collection of its probes (the sequence spectrum), obtained by sliding a fixed sampling pattern over the sequence. Such construction is required for Sequencing-by-Hybridization (SBH), a novel DNA sequencing technique based on an array (SBH chip) of short nucleotide sequences (probes). Once the sequence spectrum is biochemically obtained, a combinatorial method is used to reconstruct the DNA sequence from its spectrum. Since technology limits the number of probes on the SBH chip, a challenging combinatorial question is the design of a smallest set of probes that can sequence an arbitrary DNA string of a given length. We present in this work a novel probe design, crucially based on the use of universal bases [bases that bind to any nucleotide (Loakes and Brown, 1994)] that drastically improves the performance of the SBH process and asymptotically approaches the information-theoretic bound up to a constant factor. Furthermore, the sequencing algorithm we propose is substantially simpler than the Eulerian path method used in previous solutions of this problem.  相似文献   

20.
Previous fluorescence melting curve analysis (FMCA) used intercalating dyes, and this method has restricted application. Therefore, FMCA methods such as probe-based FMCA and molecular beacons were studied. However, the usual dual-labeled probes do not possess adequate fluorescence quenching ability and sufficient specificity, and molecular beacons with the necessary stem structures are hard to design. Therefore, we have developed a peptide nucleic acid (PNA)-based FMCA method. PNA oligonucleotide can have a much higher melting temperature (Tm) value than DNA. Therefore, short PNA probes can have adequate Tm values for FMCA, and short probes can have higher specificity and accuracy in FMCA. Moreover, dual-labeled PNA probes have self-quenching ability via single-strand base stacking, which makes PNA more favorable. In addition, this method can facilitate simultaneous identification of multiple DNA templates. In conventional real-time polymerase chain reaction (PCR), one fluorescence channel can identify only one DNA template. However, this method uses two fluorescence channels to detect three types of DNA. Experiments were performed with one to three different DNA sequences mixed in a single tube. This method can be used to identify multiple DNA sequences in a single tube with high specificity and high clarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号