首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulkkinen K 《Oecologia》2007,154(1):45-53
Single parasite species often have a range of different hosts which vary in their ability to sustain the parasite. When foraging for food, alternative hosts with similar feeding modes may compete for the infective stages of trophically transmitted parasites. If some of the infective stages end up in unsuitable hosts, transmission of the parasite to the focal host is decreased. I studied whether the presence of conspecifics alters the probability of an uninfected susceptible recipient Daphnia becoming infected by a microparasite and if this effect depends on whether the added conspecifics themselves are susceptible or resistant to infection. The presence of both susceptible and resistant conspecifics decreased the probability of infection in recipients. This effect was dependent on the density of the conspecifics but was not found to be related to their size. In addition, when Daphnia were placed in medium derived from crowded Daphnia populations, the probability of infection in recipients decreased as compared to that in standard medium. This implies that decreases in transmission probability are not caused by dilution of spores through food competition only, but also by indirect interference mediated through infochemicals released by Daphnia. Since Daphnia have been found to respond to crowding by decreasing their filtering rate, the decrease in transmission is probably caused by decreased intake of spores in crowded conditions. The presence of conspecifics can thus decrease microparasite transmission in Daphnia which may have important consequences for epidemiology and evolution of Daphnia parasites.  相似文献   

2.
Ecological communities are partly structured by indirect interactions, where one species can indirectly affect another by altering its interactions with a third species. In the absence of direct predation, nonconsumptive effects of predators on prey have important implications for subsequent community interactions. To better understand these interactions, we used a Daphnia‐parasite‐predator cue system to evaluate if predation risk affects Daphnia responses to a parasite. We investigated the effects of predator cues on two aspects of host–parasite interactions (susceptibility to infection and infection intensity), and whether or not these effects differed between sexes. Our results show that changes in response to predator cues caused an increase in the prevalence and intensity of parasite infections in female predator‐exposed Daphnia. Importantly, the magnitude of infection risk depended on how long Daphnia were exposed to the cues. Additionally, heavily infected Daphnia that were constantly exposed to cues produced relatively more offspring. While males were ~5× less likely to become infected compared to females, we were unable to detect effects of predator cues on male Daphnia–parasite interactions. In sum, predators, prey, and their parasites can form complex subnetworks in food webs, necessitating a nuanced understanding of how nonconsumptive effects may mediate these interactions.  相似文献   

3.
Duffy MA 《Oecologia》2007,153(2):453-460
As disease incidence increases worldwide, there is increased interest in determining the factors controlling parasitism in natural populations. Recently, several studies have suggested a possible role of predation in reducing parasitism, but this idea has received little experimental attention. Here, I present the results of an experiment in which I manipulated predation rate in large field enclosures to test the effects of predation on parasitism using a bluegill predator–Daphnia host–yeast parasite system. Based on previous work showing high bluegill sunfish selectivity for infected over uninfected Daphnia, I anticipated that predators would reduce infection levels. Contrary to expectations, predation did not reduce infection prevalence. Instead, there were large epidemics in all treatments, followed by reductions of host density to very low levels. As Daphnia density decreased, phytoplankton abundance increased and water clarity decreased, suggesting a parasite-driven trophic cascade. Overall, these results suggest that selective predation does not always reduce infection prevalence, and that parasites have the potential to drastically reduce host densities even in the presence of selective predators. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Maternal effects triggered by changes in the environment (e.g., nutrition or crowding) can influence the outcome of offspring–parasite interactions, with fitness consequences for the host and parasite. Outside of the classic example of antibody transfer in vertebrates, proximate mechanisms have been little studied, and thus, the adaptive significance of maternal effects on infection is not well resolved. We sought to determine why food‐stressed mothers give birth to offspring that show a low rate of infection when the crustacean Daphnia magna is exposed to an orally infective bacterial pathogen. These more‐resistant offspring are also larger at birth and feed at a lower rate. Thus, reduced disease resistance could result from slow‐feeding offspring ingesting fewer bacterial spores or because their larger size allows for greater immune investment. To distinguish between these theories, we performed an experiment in which we measured body size, feeding rate, and susceptibility, and were able to show that body size is the primary mechanism causing altered susceptibility: Larger Daphnia were less likely to become infected. Contrary to our predictions, there was also a trend that fast‐feeding Daphnia were less likely to become infected. Thus, our results explain how a maternal environmental effect can alter offspring disease resistance (though body size), and highlight the potential complexity of relationship between feeding rate and susceptibility in a host that encounters a parasite whilst feeding.  相似文献   

5.
Phosphorus (P) is an essential nutrient for growth in consumers. P‐limitation and parasite infection comprise one of the most common stressor pairs consumers confront in nature. We conducted a life‐table study using a Daphnia–microsporidian parasite model, feeding uninfected or infected Daphnia with either P‐sufficient or P‐limited algae, and assessed the impact of the two stressors on life‐history traits of the host. Both infection and P‐limitation negatively affected some life‐history traits tested. However, under P‐limitation, infected animals had higher juvenile growth rate as compared with uninfected animals. All P‐limited individuals died before maturation, regardless of infection. The numbers of spore clusters of the microsporidian parasite did not differ in P‐limited or P‐sufficient hosts. P‐limitation, but not infection, decreased body phosphorus content and ingestion rates of Daphnia tested in separate experiments. As parasite spore production did not suffer even under extreme P‐limitation, our results suggest that parasite was less limited by P than the host. We discuss possible interpretations concerning the stoichiometrical demands of parasite and suggest that our results are explained by parasite‐driven changes in carbon (C) allocation of the hosts. We conclude that the impact of nutrient starvation and parasite infection on consumers depends not only on the stoichiometric demands of host but also those of the parasite.  相似文献   

6.
Understanding responses of parasites to changes in nutrient regimes is necessary for prediction of their role in aquatic ecosystems under global change in nutrient loading. We studied the response of the natural parasite fauna of Daphnia longispina to nutrient enrichment in mesocosms in a small humic lake. We measured the concentrations of inorganic phosphorus and nitrogen in the water, total nutrients in the seston, algal and bacterial biomass, Daphnia population dynamics, Daphnia stoichiometry, Daphnia stable isotope values and the presence and abundance of parasites in treated mesocosms as compared to three control ones. Incorporation of the nutrient enrichment in the food web was seen as increased nutrient concentrations in the epilimnion and as a decrease in carbon:nutrient ratios and δ15N values in Daphnia. Nutrient enrichment did not significantly influence algal, bacterial or Daphnia biomass. One of the four parasite species observed, unidentified small gut parasite, had a higher prevalence (percentage of Daphnia infected) in treated mesocosms, but its intensity (number of parasites per infected host) remained the same among treatments. Our results suggest that the effect of nutrient enrichment on host–parasite dynamics is dependent on complex interactions within food webs and on the epidemiological traits of parasites.  相似文献   

7.
Host–parasite coevolution is potentially of great importance in producing and maintaining biological diversity. However, there is a lack of evidence for parasites directly driving genetic change. We examined the impact of an epidemic of the bacterium Pasteuria ramosa on a natural population of the crustacean Daphnia magna through the use of molecular markers (allozymes) and laboratory experiments to determine the susceptibility of hosts collected during and after the epidemic. Some allozyme genotypes were more heavily infected than others in field samples, and the population genetic structure differed during and after the epidemic, consistent with a response to parasite‐mediated selection. Laboratory studies showed no evidence for the evolution of higher resistance, but did reveal an intriguing life‐history pattern: host genotypes that were more susceptible also showed a greater tendency to engage in sex. In light of this, we suggest a model of host–parasite dynamics that incorporates the cycles of sex and parthenogenesis that Daphnia undergo in the field.  相似文献   

8.
Parasites often produce large numbers of offspring within their hosts. High parasite burdens are thought to be important for parasite transmission, but can also lower host fitness. We studied the protozoan Ophryocystis elektroscirrha, a common parasite of monarch butterflies (Danaus plexippus), to quantify the benefits of high parasite burdens for parasite transmission. This parasite is transmitted vertically when females scatter spores onto eggs and host plant leaves during oviposition; spores can also be transmitted between mating adults. Monarch larvae were experimentally infected and emerging adult females were mated and monitored in individual outdoor field cages. We provided females with fresh host plant material daily and quantified their lifespan and lifetime fecundity. Parasite transmission was measured by counting the numbers of parasite spores transferred to eggs and host plant leaves. We also quantified spores transferred from infected females to their mating partners. Infected monarchs had shorter lifespans and lower lifetime fecundity than uninfected monarchs. Among infected females, those with higher parasite loads transmitted more parasite spores to their eggs and to host plant leaves. There was also a trend for females with greater parasite loads to transmit more spores to their mating partners. These results demonstrate that high parasite loads on infected butterflies confer a strong fitness advantage to the parasite by increasing between-host transmission.  相似文献   

9.
Social parasitism is a common phenomenon amongst ants that occurs in manifold variations with differing levels of parasite–host integration. Particularly, high levels of social integration occur amongst closely related species (Emery’s rule), which form mixed colonies with their hosts and comprise the vast majority of social parasites. Considerable lower levels of integration are typically found amongst unrelated species that live in clearly separated colonies. The formicine ant Polyrhachis lama, however, parasitises a phylogenetically distant host species, Diacamma sp. of the subfamily Ponerinae, but lives spatially mixed with the host colonies. Studies on integration and communication have indicated that P. lama shows a high degree of host integration. However, the allocation of brood care behaviour, a central aspect of parasite integration, has not been studied. Because all known ant social parasites that are fully mixed with their host colonies are also true brood parasites, we investigated the integration of P. lama brood. Our results demonstrate that the parasite brood has a high degree of spatial integration, although it remains functionally separated regarding nutritive brood care. This can be attributed to behavioural and morphological differences between the phylogenetically distant species. The observed spatial confinement of parasite brood, however, is most likely due to an unusual method of chemical host integration. The parasite brood remains accepted in the Diacamma colonies only under the presence of adult parasites. Altogether, this suggests an active mechanism of chemical integration based on the acceptance allomones originating from P. lama workers. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
The widespread occurrence of multiple infections and the often vast range of nutritional resources for their hosts allow that interspecific parasite interactions in natural host populations might be determined by host diet quality. Nevertheless, the role of diet quality with respect to multispecies parasite interactions on host population level is not clear. We here tested the effect of host population diet quality on the parasite community in an experimental study using Daphnia populations. We studied the effect of diet quality on Daphnia population demography and the interactions in multispecies parasite infections of this freshwater crustacean host. The results of our experiment show that the fitness of a low‐virulent microsporidian parasite decreased in low, but not in high‐host‐diet quality conditions. Interestingly, infections with the microsporidium protected Daphnia populations against a more virulent bacterial parasite. The observed interspecific parasite interactions are discussed with respect to the role of diet quality‐dependent changes in host fecundity. This study reflects that exploitation competition in multispecies parasite infections is environmentally dependent, more in particular it shows that diet quality affects interspecific parasite competition within a single host and that this can be mediated by host population‐level effects.  相似文献   

11.
Pulkkinen K  Ebert D 《Oecologia》2006,149(1):72-80
Predators have the potential to limit the spread of pathogens not only by selecting infected prey but also by shaping prey demographics. We tested this idea with an epidemiological experiment in which we simulated variable levels of size-selective predation on zooplankton hosts and monitored the persistence of host and parasite populations. In the absence of simulated predation, the virulent protozoan Caullerya mesnili frequently drove its host Daphnia galeata to extinction. Uninfected control populations showed lower extinction rates and higher average densities than infected populations in the absence of simulated predation (all of the latter went extinct or remained infected). With a weak removal rate of the largest hosts, the proportion of populations in which the parasite drove the host to extinction decreased, while the number of populations in which the host persisted and the parasite went extinct increased. Host-parasite coexistence was also observed in some cases. With intermediate levels of removal, most of the parasite populations went extinct, while the host populations persisted. With an even higher removal rate, Daphnia were driven to extinction as well. Thus, variation in one factor, size-selective mortality, resulted in four different patterns of population dynamics. Our results highlight the potential role of predation in shaping the epidemiology and community structure of host-parasite systems.  相似文献   

12.
Knowledge of a species’ population genetic structure can provide insight into fundamental ecological and evolutionary processes including gene flow, genetic drift and adaptive evolution. Such inference is of particular importance for parasites, as an understanding of their population structure can illuminate epidemiological and coevolutionary dynamics. Here, we describe the population genetic structure of the bacterium Pasteuria ramosa, a parasite that infects planktonic crustaceans of the genus Daphnia. This system has become a model for investigations of host–parasite interactions and represents an example of coevolution via negative frequency‐dependent selection (aka “Red Queen” dynamics). To sample P. ramosa, we experimentally infected a panel of Daphnia hosts with natural spore banks from the sediments of 25 ponds throughout much of the species range in Europe and western Asia. Using 12 polymorphic variable number tandem repeat loci (VNTR loci), we identified substantial genetic diversity, both within and among localities, that was structured geographically among ponds. Genetic diversity was also structured among host genotypes within ponds, although this pattern varied by locality, with P. ramosa at some localities partitioned into distinct host‐specific lineages, and other localities where recombination had shuffled genetic variation among different infection phenotypes. Across the sample range, there was a pattern of isolation by distance, and principal components analysis coupled with Procrustes rotation identified congruence between patterns of genetic variation and geography. Our findings support the hypothesis that Pasteuria is an endemic parasite coevolving closely with its host. These results provide important context for previous studies of this model system and inform hypotheses for future research.  相似文献   

13.
Phenotypic differences between infected and non-infected hosts are often assumed to be the consequence of parasite infection. However, pre-existing differences in hosts’ phenotypes may promote differential susceptibility to infection. The phenotypic variability observed within the host population may therefore be a cause rather than a consequence of infection. In this study, we aimed at disentangling the causes and the consequences of parasite infection by calculating the value of a phenotypic trait (i.e., the growth rate) of the hosts both before and after infection occurred. That procedure was applied to two natural systems of host–parasite interactions. In the first system, the infection level of an ectoparasite (Tracheliastes polycolpus) decreases the growth rate of its fish host (the rostrum dace, Leuciscus leuciscus). Reciprocally, this same phenotypic trait before infection modulated the future level of host sensitivity to the direct pathogenic effect of the parasite, namely the level of fin degradation. In the second model, causes and consequences linked the growth rate of the fish host (the rainbow smelt, Osmerus mordax) and the level of endoparasite infection (Proteocephalus tetrastomus). Indeed, the host’s growth rate before infection determined the number of parasites later in life, and the parasite biovolume then decreased the host’s growth rate of heavily infected hosts. We demonstrated that reciprocal effects between host phenotypes and parasite infection can occur simultaneously in the wild, and that the observed variation in the host phenotype population was not necessarily a consequence of parasite infection. Disentangling the causality of host–parasite interactions should contribute substantially to evaluating the role of parasites in ecological and evolutionary processes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The factors influencing the seasonal dynamics of Daphnia in a thermally stratified lake (Esthwaite Water) are described and related to long-term changes in the weather. The Daphnia produced three cohorts in the year and the strength of the cohorts was determined by year-to-year variations in the physical characteristics of the lake and the abundance of edible algae. Food was most abundant in early summer when small, fast-growing flagellates were particularly common. In late summer, the phytoplankton community was dominated by large, inedible species but edible forms re-appeared when nutrients were entrained by wind mixing. Examples are presented to demonstrate the effect that year-to-year variations in the weather have on the growth of the phytoplankton and the dynamics of the Daphnia. In ‘good’ years, when the lake stratifies early and there are periods of episodic mixing in summer, there are two ‘pulses’ of edible algae and two strong cohorts of Daphnia. In ‘bad’ years when stratification is delayed and there is little episodic mixing, the growth of the edible algae is suppressed and the Daphnia produce two weak cohorts. The results are discussed in relation to the impact of intermediate disturbances on growth of phytoplankton and current theories of population regulation in Daphnia. The evidence suggests that the dynamics of the Daphnia in the lake are strongly influenced by seasonal variations in the mixing regime, the recycling of nutrients and the episodic growth of edible algae.  相似文献   

15.
We studied the reproductive behaviour of the solitary bee Colletes halophilus based on the variation in cell size, larval food amount and larval sex in relation to the sexual size dimorphism in this bee. Brood cells with female larvae are larger and contain more larval food than cells with males. Occasionally males are reared in female-sized cells. We conclude that a female C. halophilus in principal anticipates the sex of her offspring at the moment brood cell construction is started. Additionally a female is able to ‘change her mind’ about the sex of her offspring during a single brood cell cycle. We present a model that can predict the sex of the larvae in an early stage of development.  相似文献   

16.
1. Nesting behaviour and interactions between the bee Chelostoma florisomne (L.) (Megachilidae) and its nest parasite Sapyga clavicornis (L.) (Sapygidae) were studied through continual observations of individuals and dissections of bee nests. Protection of bee offspring is based on (1) the bee’s discovery and removal of parasite eggs deposited prior to the construction of a cell closure, (2) minimising the time when fully provisioned cells might be parasitised successfully, and (3) the construction of empty cells in front of brood cells. 2. An empty cell was found in front of 64.4% of all brood cells and, if the outermost brood cell in a nest was excluded, in front of 74.3% of inner brood cells. A vestibule closure is most often constructed in front of the outermost brood cell. 3. Following oviposition, the bee made only five flights, which together lasted 6–13 min, to construct a cell closure. A cell closure does not prevent the nest parasite from oviposition inside the brood cell, however, and parasite eggs deposited through the cell closure are not detected and removed by the bee. Only an additional cell closure, i.e. the formation of an empty cell, may protect a brood cell when the bee is not in the nest. The nest parasite often oviposited through the additional cell closure but its offspring were then trapped in the empty cell and starved to death. 4. Only 5.4% of the inner brood cells that were protected by an empty cell were parasitised, compared with 28.9% of those without an anterior, empty cell; 27.4% of the empty cells contained dead parasite offspring (eggs and larvae). Thus, the empty cells provided significant protection and, combined with additional means of protection of brood cells, led to a low degree of parasitism. More than 77% of the wasp offspring died at an early stage due to intraspecific interference competition within brood cells and as result of the wasps’ oviposition into empty cells.  相似文献   

17.
Why should the hosts of brood parasites accept and raise parasitic offspring that differ dramatically in appearance from their own? There are two solutions to this evolutionary enigma. (1) Hosts may not yet have evolved the capability to discriminate against the parasite, or (2) parasite-host systems have reached an evolutionary equilibrium. Avian brood parasites may either gain renesting opportunities or force their hosts to raise parasitic offspring by destroying or preying upon host eggs or nestlings following host ejection of parasite offspring. These hypotheses may explain why hosts do not remove parasite offspring because only then will hosts avoid clutch destruction by the cuckoo. Here we show experimentally that if the egg of the parasitic great spotted cuckoo Clamator glandarius is removed from nests of its magpie Pica pica host, nests suffer significantly higher predation rates than control nests in which parasite eggs have not been removed. Using plasticine model eggs resembling those of magpies and observations of parasites, we also confirm that great spotted cuckoos that have laid an ejected egg are indeed responsible for destruction of magpie nests with experimentally ejected parasite eggs. Cuckoos benefit from destroying host offspring because they thereby induce some magpies to renest and subsequently accept a cuckoo egg.  相似文献   

18.
Jan Bengtsson  Dieter Ebert 《Oecologia》1998,115(1-2):213-221
We examined the spatial distributions of the microparasites on two species of Daphnia in rockpools in four areas along the coast of the Gulf of Bothnia, central Sweden. We found five taxa of parasites, of which the microsporidian Larssonia sp. occurred in all the four subareas studied, and in 44% of the pools. Other parasites, such as a microsporidian intestinal parasite of the Glugoides type and the nematode Echinura uncinata, were much less common. Larssonia had a large impact on reproduction in both Daphnia species, although D.␣longispina seemed to be somewhat less affected than D.␣pulex. We used a spatial autocorrelation method (correlogram using Moran's coefficient) to analyse the spatial distribution of the two Daphnia species and the most abundant parasite species Larssonia sp. All three species showed positive spatial autocorrelations over small distances, indicating an aggregated distribution. This suggests that colonization-extinction dynamics may be important in both host species as well as in the parasite. Larssonia showed no relation to environmental factors, while the distributions of the two Daphnia species were significantly related to the water volume of the pools. D. pulex was more often found in small pools, while D. longispina more often inhabited larger pools. Our study suggests that microparasites in rockpools have substantial effects on Daphnia demography and through this they may influence population dynamics and local extinctions. Received: 28 April 1997 / Accepted: 22 January 1998  相似文献   

19.
20.
Evidence of poor correspondence between an insect herbivore’s oviposition preferences and the performance of its offspring has generally been attributed either to maladaptive behavior of the insect mother or inadequate measurement by the researcher. In contrast, we hypothesize that many cases of “bad mothers” in herbivores may be a byproduct of the hierarchical way natural selection works on resistance in host plants. Epistatic selection on the components of resistance (i.e., antixenosis and antibiosis) may generate negative genetic correlations between the resistance components, which could counteract the efforts of herbivores to oviposit on the best hosts for the performance of their offspring. In common garden and greenhouse experiments, we measured aspects of antixenosis and antibiosis resistance in 26 genets of tall goldenrod, Solidago altissima, against two common herbivores: the gall-inducing fly Eurosta solidaginis and the spittlebug Philaenus spumarius. Goldenrod antixenosis and antibiosis were positively correlated against E. solidaginis and negatively correlated against P. spumarius. Analogously, population-wide preference–performance correlations were positive for the gall flies and negative for the spittlebugs. Several natural history differences between the two insects could make gall flies better mothers, including better synchrony of the phenologies of the flies and the host plant, the much narrower host range of the gall flies than the spittlebugs, and the more sedentary lifestyle of the gall fly larvae than the spittlebug nymphs. If these results are typical in nature, then negative genetic correlations in antixenosis and antibiosis in plants may often result in zero or negative population-wide correlations between preference and performance in herbivores, and thus may be an important reason why herbivorous insects often appear to be bad mothers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号