首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Results of axonal labelings with CoCl2, cobaltous lysine and cobaltic lysine complexes are compared on dorsal roots and nerves of the spinal cord and brain stem in the living frog. The most satisfactory staining of fibres and terminals is given by CoCl2; its application however, is limited by its rather short (6--10 mm) axonal transport. Cobaltous lysine is transported somewhat better, but it gives a poor fibre staining in the spinal cord. The axonal transport of cobaltic lysine is the best, covering a distance of 40--50 mm. Combination of cobaltic lysine with 2--5% dimethyl sulphoxide greatly enhances the axonal uptake of cobalt and extends the distance of transport to 70--80 mm. It is assumed that better transport of cobalt complexes is achieved by their less toxic effect on the nerve cell.  相似文献   

5.
This paper describes an enzymatic labeling technique (ELT), using transglutaminases. On the basis of the ELT, isotopic nuclei are easily incorporated into the gamma-carboxyamide groups of glutamine residues in arbitrary proteins, without changing their chemical structures. We have also shown that, by using ELT, protein aggregation was easily checked for NMR studies and that it can be applicable for the screening of weakly bound ligands for proteins. Owing to the simple preparation of the isotope-labeled proteins, ELT should be useful for speeding up various structural and functional analyses of arbitrary proteins.  相似文献   

6.
7.
8.
Many types of physical, spectroscopic, and biological studies of proteins and other macromolecules are facilitated by the incorporation of reporter groups. In many cases these are single atom substitutes, for example isotopes (13C for C), or light (F for H) and heavy (Se for S) atom homologs. In some circumstances the incorporation of two different labels in the same molecule would be greatly desirable. Commonly used protein engineering methods for incorporating them can rarely cope with differential double labeling, and have other limitations such as universal, non-specific, or random incorporation. Although de novo peptide synthesis has the power to achieve highly specific labeling, the difficulties inherent in creating long sequences lead us to propose protein semisynthesis as the most practical approach. By ligating combinations of natural and labeled synthetic fragments to reform holoproteins, we can overcome any of the limitations discussed. Using cytochrome c as a model protein we show that two reporter atoms, selenium and bromine, can be simultaneously and site-specifically incorporated without significant consequences to structure and (or) function. This capability opens up the prospect of advances in a number of areas in structural biology.  相似文献   

9.
10.
11.
Photoaffinity labeling of soluble auxin-binding proteins.   总被引:6,自引:0,他引:6  
The photoaffinity labeling agent azido-IAA (5-N3-[7-3H]indole-3-acetic acid), a biologically active analogue of the endogenous auxin indole-3-acetic acid, was used to search for auxin-binding proteins in the soluble fraction of Hyoscyamus muticus cells. Azido-IAA became covalently attached to three polypeptides with a high specific activity. The labeling was specific for IAA and not due to random tagging. Two polypeptides with molecular masses of 31 and 24 kDa in the 0-30% ammonium sulfate fraction were labeled after UV photolysis at 0 degree C but not at -196 degrees C, and appeared to have a high affinity indole-binding site(s) for which active, non-indole auxins were not good ligands. A third polypeptide with a molecular mass of 25 kDa present in the 50-60% ammonium sulfate fraction labeled exclusively at -196 degrees C and had a significant affinity for active auxins but not for inactive indoles. The azido-IAA labeling pattern, pI, competition results, and immunoprecipitation all indicate that the 31- and 24-kDa polypeptides are related to the basic form of endo-1,3-beta-glucanase (EC 3.2.1.39). Azido-IAA labeling polypeptides equivalent to the 31- and 24-kDa species were apparently also present in the cell wall. The low pH optimum for binding of azido-IAA to the 25-kDa polypeptide suggests the location of the active protein in a compartment such as the vacuole or a transport vesicle rather than in the cytosol.  相似文献   

12.
The direct labeling of antibodies and antibody fragments to form a highly stable bond between technetium and the sulfide groups of proteins is now well established. To optimize this reaction, the antibody protein must have sufficient reactive sulfides available to accept that technetium metal ions that are formed by the reduction of pertechnetate in the presence of a weak complexing agent. The reactive sulfide groups are provided by first reducing a small fraction of the disulfide bridges in the antibody protein or by starting with Fab′ fragments, which already have reactive sulfide groups. When the antibody protein has been appropriately reduced, and the reactive sulfide groups protected by a metal ion with a lower binding affinity than technetium, such as tin or zinc, very high labeling yields of high-affinity-bonded 99mTc can be achieved. This can be accomplished without loss of immunoreactivity, measured as either affinity or immunoreactive fraction.Side reactions can produce radiochemical impurities such as low-affinity, bound 99mTc; 99mTc colloids; 99mTc peptides or antibody aggregates; or 99mTc-complexes. Also, pertechnetate ions may be an impurity if the sodium pertechnetate solution added to the reduced antibodies is not completely reduced. The specifics of minimizing these side reactions have not been extensively discussed in the prior literature; however, it is clear that appropriate reduction of the protein prior to labeling and complete removal of the reducing agent, particularly if it contains reactive sulfide groups or is toxic, are critical.One- or two-step 99mTc-labeling kits for preparing 99mTc-labeled antibody or antibody fragments are rapidly being introduced for use in clinical nuclear medicine studies. These direct labeling methods employ a common sequence of chemical reactions, although the reducing agents for both the antibody and the [99mTc]pertechnetate may vary. Different 99mTc transfer agents may be used, but all transfer agents have the common feature of quickly forming weak to moderately strong complexes with reduced technetium. Most use Sn(II) to reduce the pertechnetate, although other reducing agents can be used.  相似文献   

13.
14.
Selenocysteine (Sec; U in one-letter code) is the twenty-first naturally occurring amino acid, with a selenium atom that gives this cysteine (Cys) homolog unique biochemical properties, including a high nucleophilicity and significant reactivity with electrophilic agents. This can be used in biotechnological Sec-dependent applications. Here, we describe how Sec can be introduced into a carboxy-terminal tetrapeptide motif (-Gly-Cys-Sec-Gly-COOH, known as a Sel-tag) for recombinant proteins by tailoring the encoding gene to become compatible with the Escherichia coli selenoprotein synthesis machinery. We also describe how the Sel-tag can be used as a basis for efficient one-step protein purification, rapid Sec-targeting protein labeling with electrophilic compounds, or radiolabeling with the positron emitter 11C.  相似文献   

15.
An iodinated derivative of the imidoester methyl p-hydroxybenzimidate HCl (MPHBIM) has been synthesized for the selective labeling of proteins to high specific activity with radioactive iodine. In the first step, MPHBIM is reacted with radioactive iodide in the presence of chloramine T, and the iodinated derivative is precipitated from acidified solution to achieve partial purification. In the second step, the iodinated imidoester is redissolved at slightly alkaline pH and reacted with protein amino groups, to which it couples by amidine linkage. The coupling reaction proceeds in the presence of sulfhydryl reagents used to protect proteins. The main advantage of this two-step labeling procedure is that it avoids direct contact of the protein with potentially deleterious materials such as chloramine T or contaminants of the radioactive iodide.  相似文献   

16.
The most common technique for preparative labeling of proteins with radioisotopes for experimental purposes utilizes 125I. This isotope has certain limitations, including the emission of gamma- and X-irradiation, the release of gaseous 125I2 from solutions of Na 125I, and the potential for concentration of 125I in thyroid glands. We have discovered a means for labeling proteins rapidly and simply with [35S]methionine. The technique is applicable to a wide variety of proteins. Antibodies labeled by our technique remain functional.  相似文献   

17.
18.
Fluorescent labeling of proteins. A new methodology   总被引:6,自引:0,他引:6  
A new reagent, 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF) has been utilized for the fluorescent labeling of proteins. MDPF, which is nonfluorescent, reacts with primary amino groups to form fluorescent N-substituted 3,5-diphenyl-5-hydroxy-2-pyrrolin-4-ones. Antibodies labeled with MDPF afford intense immunofluorescent staining.  相似文献   

19.
At least two forms of aryl acylamidase (E.C.3.5.1.13, AAA) were separated from rat brain extracts by ammonium sulfate precipitation (33–60% saturation) and subsequent Bio-Gel column chromatography. Fraction AAA-1 showed pH optimum at 7.5 whereas AAA-2 showed a pH optimum at 5.5 AAA-1 activity was markedly inhibited at pH 7.5 by d-LSD and 2-Br-LSD, moderately inhibited by 5-HT and slightly inhibited by tryptamine but it was not affected by 1-LSD, at 0.1 mM concentration. AAA-2 was only moderately inhibited at pH 5.5 by d-LSD and 2-Br-LSD but not affected by 1-LSD, 5-HT or tryptamine at the same concentrations. Catecholamines and their structurally related drugs had no significant effects on either enzyme activity. Kinetic studies with AAA-1 indicated competitive inhibition by d-LSD with a Ki value of 4.90 ± 0.61 μM.  相似文献   

20.
Reactive surface lysine groups on the monoclonal antibody (3G4) and on human serum albumin (HSA) were labeled with two different PARACEST chelates. Between 7.4 and 10.1 chelates were added per 3G4 molecule and between 5.6 and 5.9 chelates per molecule of HSA, depending upon which conjugation chemistry was used. The immunoreactivity of 3G4 as measured by ELISA assays was highly dependent upon the number of attached chelates: 88% immunoreactivity with 7.4 chelates per antibody versus only 17% immunoreactivity with 10.1 chelates per antibody. Upon conjugation to 3G4, the bound water lifetime of Eu-1 increased only marginally, up from 53 ??s for the non-conjugated chelate to 65-77 ??s for conjugated chelates. Conjugation of a chelate Eu-2 to HSA via a single side-chain group also resulted in little or no change in bound water lifetime (73-75 ??s for both the conjugated and non-conjugated forms). These data indicate that exchange of water molecules protons between the inner-sphere site on covalently attached PARACEST agent and bulk water is largely unaffected by the mode of attachment of the agent to the protein and likely its chemical surroundings on the surface of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号