首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
Experiments are reported demonstrating that differential rates of inactivation of the histochemical staining for myofibrillar actomyosin ATPase in rat skeletal muscle fibers exist following inclusion of low concentrations of Cu2+ in the preincubation medium. This response of rat muscle occurs at near neutral (7.40), acid (4.60), and alkaline (10.30) pH. The response to Cu2+ appears to result from a binding of Cu2+ onto the myofibrillar complex, probably on myosin itself, as it can be reversed by soaking of the pretreated muscle sections in sodium cyanide or the Cu2+ chelator diethyldithiocarbamate. The pattern of modification of the staining pattern following pretreatment with Cu2+ is the mirror image of that produced by pretreatment with acid. The results demonstrate that the inclusion of Cu2+ in the preincubation media for the myofibrillar actomyosin ATPase can be a useful tool to differentiate fiber types. They also support the earlier conclusion that three distinct types of type II fibers can be identified in rat skeletal muscle based on the histochemical staining for myofibrillar actomyosin ATPase.  相似文献   

2.
Summary Experiments are reported demonstrating that differential rates of inactivation of the histochemical staining for myofibrillar actomyosin ATPase in rat skeletal muscle fibers exist following inclusion of low concentrations of Cu2+ in the preincubation medium. This response of rat muscle occurs at near neutral (7.40), acid (4.60), and alkaline (10.30) pH. The response to Cu2+ appears to result from a binding of Cu2+ onto the myofibrillar complex, probably on myosin itself, as it can be reversed by soaking of the pretreated muscle sections in sodium cyanide or the Cu2+ chelator diethyldithiocarbamate. The pattern of modification of the staining pattern following pretreatment with Cu2+ is the mirror image of that produced by pretreatment with acid. The results demonstrate that the inclusion of Cu2+ in the preincubation media for the myofibrillar actomyosin ATPase can be a useful tool to differentiate fiber types. They also support the earlier conclusion that three distinct types of type II fibers can be identified in rat skeletal muscle based on the histochemical staining for myofibrillar actomyosin ATPase.  相似文献   

3.
Comparisons were made of the histochemical characteristics of skeletal muscle from 10 animal species. The basic comparison was made from the staining patterns for the myofibrillar actomyosin ATPase produced by preincubation of fresh frozen cross-sections of muscle at alkaline pH (10.30) or acid pH (4.60) with those produced by preincubation in media containing Cu2+ at alkaline pH (10.30), near neutral pH (7.40), or acid pH (4.60). Muscle sections were also stained for reduced nicotinamide adenine dinucleotide tetrazolium reductase and alpha-glycerophosphate dehydrogenase to provide an indication of the relative oxidative and glycolytic capacity of the different fiber types. Type II fibers in mixed fibered muscles were either very sensitive, moderately sensitive, or relatively insensitive to inactivation of the myofibrillar actomyosin ATPase after acid preincubation. These fibers were identified as type IIA1, IIA2, and IIA3, respectively. The myofibrillar actomyosin ATPase of the type I fibers of these muscles, with the exception of those in mouse muscle, was activated by pretreatment with acid. A separation of animal species was possible based on the stability of the IIA1 fibers to inclusion of Cu2+ in the preincubation medium. For one group of animals (rat, mouse, monkey, man, dog, rabbit, and cow), a reciprocal relationship existed between lability to acid and stability to Cu2+ for type IIA1 and IIA3 fibers, respectively. For the second group of animals (horse, ass, and cat) there was a parallel relationship between lability or stability of the type IIA1 and IIA3 fibers to pretreatment with either acid or Cu2+.  相似文献   

4.
Summary Comparisons were made of the histochemical characteristics of skeletal muscle from 10 animal species. The basic comparison was made from the staining patterns for the myofibrillar actomyosin ATPase produced by preincubation of fresh frozen cross-sections of muscle at alkaline pH (10.30) or acid pH (4.60) with those produced by preincubation in media containing Cu2+ at alkaline pH (10.30), near neutral pH (7.40), or acid pH (4.60). Muscle sections were also stained for reduced nicotinamide adenine dinucleotide tetrazolium reductase and alpha-glycerophosphate dehydrogenase to provide an indication of the relative oxidative and glycolytic capacity of the different fiber types. Type II fibers in mixed fibered muscles were either very sensitive, moderately sensitive, or relatively insensitive to inactivation of the myofibrillar actomyosin ATPase after acid preincubation. These fibers were identified as type IIA1, IIA2, and IIA3, respectively. The myofibrillar actomyosin ATPase of the type I fibers of these muscles, with the exception of those in mouse muscle, was activated by pretreatment with acid. A separation of animal species was possible based on the stability of the IIA1 fibers to inclusion of Cu2+ in the preincubation medium. For one group of animals (rat, mouse, monkey, man, dog, rabbit, and cow), a reciprocal relationship existed between lability to acid and stability to Cu2+ for type IIA1 and IIA3 fibers, respectively. For the second group of animals (horse, ass, and cat) there was a parallel relationship between lability or stability of the type IIA1 and IIA3 fibers to pretreatment with either acid or Cu2+ Visiting scholar from the Laboratory of Biomechanics and Physiology, College of General Education, Yamaguchi University, Yamaguchi 753, JapanSupported in part by Washington State Equine Research Program grant #105 3925 0042  相似文献   

5.
Summary The influence of the composition of the preincubation medium on the histochemical demonstration of myofibrillar actomyosin ATPase, including a variety of carboxylic acid and non-carboxylic acid buffering compounds and neutral salts, was studied. In inorganic salt-free systems the rate of the activation of type I fibers and inactivation of type II fibers was accelerated when the carboxylic acids had longer chain length or multiple carobxyl groups. Of these factors, the number of carboxyl groups was dominant with a 100 mM citrate buffer producing a sharp differentiation between fiber types. In contrast, the time course of the response was exceptionally long in an acetate buffer. The time course of the ATPase reaction was also modified by other buffers at pH 4.60. The most notable were an ascorbate — glycine buffer system which produced little or no deviation from the alkaline preincubation staining pattern after prolonged preincubation and a pyrophosphate system which produced a rapid change. Neutral salts in the preincubation medium accelerated the time course of the inactivation — activation process with the order for the halogen salts of K+ being F<Cl<Br<I, which is a progression by molecular weight. The only sequence for cations on the myofibrillar actomyosin ATPase was Li+< Na+<K+. The response to salts was concentration dependent. An interaction existed between buffering compound, type of salt, and pH. These experiments demonstrate that the histochemical differentiation of fiber types by the myofibrillar actomyosin ATPase reaction depends upon a modification of some component(s) of the myofibrillar complex that can be influenced by a number of factors.  相似文献   

6.
A quantitative histochemical study was carried out on axial musculature of Noemacheilus barbatulus L. On the basis of succinate dehydrogenase (SDH) and myofibrillar ATP-ase activity, 5 types of muscle fibers are described. When the SDH method was used, red, tonic, intermediate, and white muscle fibers were easily observed. However, histochemical reaction for myofibrillar ATP-ase activity, after alkaline preincubation (pH = 10.4), revealed another type of fiber zone laying between the intermediate and white muscle fiber regions and forming a transitional zone. Electron microscopic observation showed significant differences in sarcomere organization and thickness of myosin filaments of the various muscle fiber types.  相似文献   

7.
Rats were used in this study to determine the time course of conversion of muscle fiber types. The right or left gastrocnemius muscle was removed thereby causing an overload on the ipsilateral soleus and plantaris muscles. The contralateral limb served as a control. The type II to type I fiber conversion was followed histochemically in the soleus and plantaris muscles for one to six weeks following surgery. Muscle sections were stained for myofibrillar actomyosin ATPase and NADH tetrazolium reductase. The type I population in the soleus muscle was 99.3% six weeks after synergist removal. The plantaris muscle underwent a two fold increase in the percentage of type I fibers after six weeks. Transitional fibers were prominent in the plantaris muscle and reached their peak at 4% (P less than 0.05) of the total population, four weeks after surgery.  相似文献   

8.
Fast and slow muscles from the claws and abdomen of the American lobster Homarus americanus were examined for adenosine triphosphatase (ATPase) activity and for differences in myofibrillar proteins. Both myosin and actomyosin ATPase were correlated with fiber composition and contractile speed. Four distinct patterns of myofibrillar proteins observed in sodium dodecyl sulfate-polyacrylamide gels were distinguished by different assemblages of regulatory and contractile protein variants. A total of three species of troponin-T, five species of troponin-I, and three species of troponin-C were observed. Lobster myosins contained two groups of light chains (LC), termed "alpha" and "beta." There were three alpha-LC variants and two beta-LC variants. There were no apparent differences in myosin heavy chain, actin, and tropomyosin. Only paramyosin showed a pattern completely consistent with muscle fiber type: slow fibers contained a species (105 kD) slightly smaller than the principle variant (110 kD) in fast fibers. It is proposed that the type of paramyosin present could provide a biochemical marker to identify the fiber composition of muscles that have not been fully characterized. The diversity of troponin and myosin LC variants suggests that subtle differences in physiological performance exist within the broader categories of fast- and slow-twitch muscles.  相似文献   

9.
Selected morphological and metabolic properties of single fibers were studied in biopsy samples from the tibialis anterior of normal control and spinal cord-injured (SCI) subjects. In the SCI subjects, one muscle was electrically stimulated progressively over 24 wk, in 6-wk blocks for less than or equal to 8 h/day, while the contralateral muscle remained untreated. The percentage of fibers classified as type I [qualitative alkaline preincubation myofibrillar adenosinetriphosphatase (ATPase)] was significantly less in the unstimulated paralyzed muscles than in the muscles of normal control subjects. Electrical stimulation increased the proportion of type I fibers in the SCI subjects. For both type I and type II fibers, the cross-sectional area, activities of myofibrillar ATPase and succinate dehydrogenase, and the capillary-to-fiber ratio were also significantly less in the paralyzed muscles than in the normal control muscles. Electrical stimulation increased only the activity of succinate dehydrogenase in both fiber types of the SCI subjects. These data are discussed in relation to the electromechanical properties of the respective muscles described in an accompanying paper (J. Appl. Physiol. 72: 1393-1400, 1992). In general, the electrical stimulation protocol used in this study enhanced the oxidative capacity and endurance properties of the paralyzed muscles but had no effect on fiber size and strength.  相似文献   

10.
The histochemical demonstration of quantitative differences in myofibrillar ATPase activity at the selective pH optima of the various types of human skeletal muscle fibers is the most widely used technique for their differentiation. The basis of the reaction is the deposition of insoluble salts of inorganic phosphate cleaved from ATP by myofibrillar ATPase(s) followed by substitution of the phosphates with less soluble chromogenic salts. Doriguzzi and associates reported using metachromatic dyes to demonstrate quantitative differences in phosphate deposition among different fiber types. Following routine ATPase histochemistry and staining with either azure A or toluidine blue, fibers with low ATPase activity (and low phosphate content) were stained metachromatically while fibers with high ATPase activity (and high phosphate content) were orthochromatic with the intensity of color proportional to the content of insoluble phosphate. The metachromasia was readily lost after immoderate washing in aqueous solutions or routine dehydration in ethanol, with consequent diminished fiber type distinction. A critical modification of this technique is reported in which incubation of frozen sections of human skeletal muscle in ATP-containing medium is carried out at room temperature (22-24 C), rather than the usual 37 C, followed by a revised washing and dehydration protocol. With these modifications, the four human skeletal muscle fiber types (types I, IIA, IIB, and IIC) can be identified rapidly and reliably in single sections, obviating the need for examination of serial sections. The tinctorial differentiation allows fiber type identification even in black and white photographs.  相似文献   

11.
The histochemical demonstration of quantitative differences in myofibrillar ATPase activity at the selective pH optima of the various types of human skeletal muscle fibers is the most widely used technique for their differentiation. The basis of the reaction is the deposition of insoluble salts of inorganic phosphate cleaved from ATP by myofibrillar ATPase(s) followed by substitution of the phosphates with less soluble chromogenic salts. Doriguzzi and associates reported using metachromatic dyes to demonstrate quantitative differences in phosphate deposition among different fiber types. Following routine ATPase histochemistry and staining with either azure A or toluidine blue, fibers with low ATPase activity (and low phosphate content) were stained metachromatically while fibers with high ATPase activity (and high phosphate content) were orthochromatic with the intensity of color proportional to the content of insoluble phosphate. The metachromasia was readily lost after immoderate washing in aqueous solutions or routine dehydration in ethanol, with consequent diminished fiber type distinction. A critical modification of this technique is reported in which incubation of frozen sections of human skeletal muscle in ATP-containing medium is carried out at room temperature (22-24 C), rather than the usual 37 C., followed by a revised washing and dehydration protocol. With these modifications, the four human skeletal muscle fiber types (types I, HA, IIB, and IIC) can be identified rapidly and reliably in single sections, obviating the need for examination of serial sections. The tinctorial differentiation allows fiber type identification even in black and white photographs.  相似文献   

12.
Summary Rats were used in this study to determine the time course of conversion of muscle fiber types. The right or left gastrocnemius muscle was removed thereby causing an overload on the ipsilateral soleus and plantaris muscles. The contralateral limb served as a control. The type II to type I fiber conversion was followed histochemically in the soleus and plantaris muscles for one to six weeks following surgery. Muscle sections were stained for myofibrillar actomyosin ATPase and NADH tetrazolium reductase. The type I population in the soleus muscle was 99.3% six weeks after synergist removal. The plantaris muscle underwent a two fold increase in the percentage of type I fibers after six weeks. Transitional fibers were prominent in the plantaris muscle and reached their peak at 4% (P<0.05) of the total population, four weeks after surgery.This research was funded in part by grants from The Graduate School at Washington State University, and The Society of the Sigma Xi  相似文献   

13.
Oxidative capacity and capillary density of diaphragm motor units   总被引:2,自引:0,他引:2  
Motor units in the cat diaphragm (DIA) were isolated in situ by microdissection and stimulation of C5 ventral root filaments. Motor units were classified based on their isometric contractile force responses and fatigue indexes (FI). The muscle fibers belonging to individual units (i.e., the muscle unit) were identified using the glycogen-depletion method. Fibers were classified as type I or II based on histochemical staining for myofibrillar adenosine triphosphatase (ATPase) after alkaline preincubation. The rate of succinate dehydrogenase (SDH) activity of each fiber was determined using a microphotometric procedure. The location of capillaries was determined from muscle cross sections stained for ATPase after acid (pH = 4.2) preincubation. The capillarity of muscle unit fibers was determined by counting the number of capillaries surrounding fibers and by calculating the number of capillaries per fiber area. A significant correlation was found between the fatigue resistance of DIA units and the mean SDH activity of muscle unit fibers. A significant correlation was also observed between DIA unit fatigue resistance and both indexes of muscle unit fiber capillarity. The mean SDH activity and mean capillary density of muscle unit fibers were also correlated. We conclude that DIA motor unit fatigue resistance depends, at least in part, on the oxidative capacity and capillary density of muscle unit fibers.  相似文献   

14.
Myosin types in human skeletal muscle fibers   总被引:2,自引:0,他引:2  
By combining enzyme histochemistry for fiber typing with immunohistochemistry for slow and fast myosin a correlation between fiber type and myosin type was sought in human skeletal muscle. Fiber typing was done by staining for myofibrillar ATPases after preincubation at discriminating pH values. Myosin types were discriminated using type specific anti-rabbit myosin antibodies shown to cross-react with human myosin and were visualized by a protein A-peroxidase method. Type I fibers were shown to contain slow myosin only, type IIA and IIB fibers fast myosin only, and type IIC fibers both myosins in various proportions. When muscle biopsies from well-trained athletes were investigated essentially the same staining pattern was observed. However, rarely occurring type I fibers with high glycolytic activity were detected containing additional small amounts of fast myosin and occasional type IIA fibers had small amounts of slow myosin. Based on the observation of various fiber types in which slow and fast myosin coexist we propose a dynamic continuum of fibers encompassing all fiber types.  相似文献   

15.
Summary By combining enzyme histochemistry for fiber typing with immunohistochemistry for slow and fast myosin a correlation between fiber type and myosin type was sought in human skeletal muscle. Fiber typing was done by staining for myofibrillar ATPases after preincubation at discriminating pH values. Myosin types were discriminated using type specific anti-rabbit myosin antibodies shown to cross-react with human myosin and were visualized by a protein A-peroxidase method. Type I fibers were shown to contain slow myosin only, type IIA and IIB fibers fast myosin only, and type IIC fibers both myosins in various proportions. When muscle biopsies from well-trained athletes were investigated essentially the same staining pattern was observed. However, rarely occurring type I fibers with high glycolytic activity were detected containing additional small amounts of fast myosin and occasional type IIA fibers had small amounts of slow myosin. Based on the observation of various fiber types in which slow and fast myosin coexist we propose a dynamic continuum of fibers encompassing all fiber types.  相似文献   

16.
The superficial flexor muscle in the abdomen of the Norway lobster Nephrops norvegicus (L.), comprises medial and lateral bundles with distinct fiber type composition. Fibers of the medial bundle have long sarcomeres (> 9 microns) and a thick fringe of subsarcolemmal mitochondria. In histochemical tests they have a low total myofibrillar ATPase activity, a pH-stable isoform of myosin ATPase, and a high level of oxidative enzyme activity. A few fibers of the lateral bundle also display these morphological and histochemical properties. However, the majority of lateral fibers have shorter sarcomeres (< 8 microns), no subsarcolemmal mitochondria, but a well-developed tubular system. They also have a higher total myofibrillar ATPase activity, a pH-labile isoform of myosin ATPase, and a low level of oxidative enzyme activity. The heterogeneous pattern of different fiber types in the lateral bundle of this muscle is similar but not identical in the different abdominal segments and in different individuals.  相似文献   

17.
Zawadowska B 《Tissue & cell》1991,23(5):657-664
The eye muscles of the pike are organized in two distinct populations of fibers arranged in semicircular layers. The distal layer, consisting of small diameter muscle fibers, is mainly made up of type I and tonic (slow) fibers. The central and proximal (facing the eyeball) parts of the eye muscles are occupied by IIB and IIC (fast) fibers. As a main criterion for identification of muscle fiber types, the reaction for actomyosin ATPase activity has been used: metabolic characterization of these fibers has been carried out on the basis of SDH activity.  相似文献   

18.
The chick's anterior latissimus dorsi muscle (ALD) was tenotomized at its origin at either 1 day or 4 weeks of age, and investigated histochemically and ultrastructurally at intervals thereafter to determine whether muscle fiber-type transformation from a slow to a twitch type is greater in young birds than older birds. No transformation of fiber type occurred in either procedure, but a new muscular connection regenerated between the scar tissue at the end of the original tenotomized stump and the former origin. This regenerated muscle had a mosaic pattern of fiber types, as demonstrated by myofibrillar ATPase activity, and contained predominantly fast fibers, as contrasted with controls or the tenotomized portion, which contained predominantly slow tonic muscle fibers. The regenerated portion contained muscle spindles. The original portion of the tenotomized muscle was indistinguishable from the control muscle. These responses of the chick ALD to tenotomy are quite different from those in the pigeon, which are reported in the following study.  相似文献   

19.
In the normal and randomly reinnervated plantaris muscle of rat staining for succinic dehydrogenase (SDH) activity differentiates three fiber types (A, B and C), staining for myofibrillar adenosine triphosphatase (ATPase) differentiates three fiber types (alpha, beta and alpha beta). Here we present our finding type A corresponds to alpha beta fibers, B to beta or alpha beta, C to alpha or alpha beta. In normal soleus muscle both classifications were found to be compatible and B fibers correspond to beta and C to alpha fibers. An exception is the small percent of alpha beta fibers which correspond to B type. In randomly reinnervated soleus muscle changes in ATPase activity are not followed by changes in SDH staining and B fibers correspond to alpha, beta or alpha beta types.  相似文献   

20.
Endurance muscle stress leads to polymorphic expression of myosin heavy chains (MyHC). Histochemical and electrophoretic analyses were performed on different masticatory muscles (masseter, temporal, geniohyoid and medial pterygoid) of 10 weeks old pigs after 28 days of chronic sagittal advancement of the mandibulae. The differentiation between fiber types was investigated histochemically with the myofibrillar ATPase (mATPase) method and by immunohistochemistry. Expression of different MyHC isoforms was also assessed by means of immunoblotting with monoclonal antibodies. The results of both methods were compared. Chronic sagittal advancement of the mandibulae led to an increase in the cross-sectional area of type I fibers and type I MyHC in the anterior part of the masseter, the distal part of the temporal and the medial pterygoid muscle. In the present study, clear differentiation between type I and type II muscle fibers in all histological analyses was possible. However, mATPase classification of subtypes of type II fibers may lead to misinterpretations. Additionally, a direct correlation between the type I MyHC concentration and the type I fibers was seen in enzyme histochemical and immunohistochemical staining. The defined cross section of fibers is important for the histological investigation in small muscles. The immunoblot method seems to be more sensitive and less subjective for measurement of muscle changes. It can be concluded that the immunoblot method used for measuring the MyHC content is a valid alternative for fiber typing in small muscles as it is less time-consuming and more sensitive than qualitative histochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号