首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We constructed several deletion mutants of Escherichia coli single-stranded DNA binding protein (EcoSSB) lacking different parts of the C-terminal region. This region of EcoSSB is composed of two parts: a glycine and proline-rich sequence of approximately 60 amino acids followed by an acidic region of the last 10 amino acids which is highly conserved among the bacterial SSB proteins. The single-stranded DNA binding protein of human mitochondria (HsmtSSB) lacks a region homologous to the C-terminal third of EcoSSB. Therefore, we also investigated a chimeric protein consisting of the complete sequence of the human mitochondrial single-stranded DNA binding protein (HsmtSSB) and the C-terminal third of EcoSSB. Fluorescence titrations and DNA-melting curves showed that the C-terminal third of EcoSSB is not essential for DNA-binding in vitro. The affinity for single-stranded DNA and RNA is even increased by the removal of the last 10 amino acids. Consequently, the nucleic acid binding affinity of HsmtSSB is reduced by the addition of the C-terminus of EcoSSB. All mutant proteins lacking the last 10 amino acids are unable to substitute wild-type EcoSSB in vivo. Thus, while the nucleic acid binding properties do not depend on an intact C-terminus, this region is essential for in vivo function. Although the DNA binding properties of HsmtSSB and EcoSSB are quite similar, HsmtSSB does not function in E.coli. This failure cannot be overcome by fusing the C-terminal third of EcoSSB to HsmtSSB. Thus differences in the N-terminal parts of both proteins must be responsible for this incompatibility. None of the mutants was defective in tetramerization. However, mixed tetramers could only be formed by proteins containing the same N-terminal part. This reflects structural differences between the N-terminal parts of HsmtSSB and EcoSSB. These results indicate that the region of the last 10 amino acids, which is highly conserved among bacterial SSB proteins, is involved in essential protein-protein interactions in the E.coli cell.  相似文献   

2.
The 3'-5' single-stranded DNA(ssDNA) degrading exonuclease I of E. coli directly interacts with the E. coli ssDNA binding protein (EcoSSB). Analytical ultracentrifugation shows that all 4 carboxy-termini of an EcoSSB tetramer bind exonuclease I. Binding is weakened by increasing salt concentrations, indicating the involvement of the negatively charged amino acids of the carboxy-terminus of SSB. Mutant SSB proteins EcoSSBP176S (ssb-113) and EcoSSBF177C do not bindtoexonuclease I while EcoSSBG15D (ssb-3) does bind. In a co-precipitation assay we show that the absence of the lastten amino acids (PMDFDDDIPF) completely abolishes binding of EcoSSB to exonuclease I. The interaction does not depend on the presence of the correct amino-terminal DNA binding domain or the amino acid sequences between the DNA binding domain and the last ten amino acids. A synthetic peptide (WMDFDDDIPF), corresponding to the last nine amino acids of EcoSSB, specifically inhibits the interaction. Both EcoSSBP176S and EcoSSBF177C SSBs bind DNA similar to wild-type EcoSSB, indicating that the phenotype of ssb-113 is not an indication of altered DNA binding. The repair deficiency of either ssb-3 or ssb-113 strain can be complemented by overexpression of the respective other mutant.  相似文献   

3.
Due to their involvement in processes such as DNA replication, repair, and recombination, bacterial single-stranded DNA binding (SSB) proteins are essential for the survival of the bacterial cell. Whereas most bacterial SSB proteins form homotetramers in solution, dimeric SSB proteins were recently discovered in the Thermus/Deinococcus group. In this work we characterize the biophysical properties of the SSB protein from Thermus aquaticus (TaqSSB), which is structurally quite similar to the tetrameric SSB protein from Escherichia coli (EcoSSB). The binding of TaqSSB and EcoSSB to single-stranded nucleic acids was found to be very similar in affinity and kinetics. Mediated by its highly conserved C-terminal region, TaqSSB interacts with the χ-subunit of E. coli DNA polymerase III with an affinity that is similar to that of EcoSSB. Using analytical ultracentrifugation, we show that TaqSSB mutants are able to form tetramers in solution via arginine-mediated hydrogen-bond interactions that we identified in the crystal packing of wild-type TaqSSB. In EcoSSB, we identified a homologous arginine residue involved in the formation of higher aggregates and metastable highly cooperative single-stranded DNA binding under low salt conditions.  相似文献   

4.
Single-stranded DNA binding (SSB) protein binds to single-stranded DNA (ssDNA) at the lagging strand of the replication fork in Escherichia coli cells. This protein is essential for the survival of the E.coli cell, presumably because it shields the ssDNA and holds it in a suitable conformation for replication by DNA polymerase III. In this study we undertook a biophysical analysis of the interaction between the SSB protein of E.coli and the χ subunit of DNA polymerase III. Using analytical ultracentrifugation we show that at low salt concentrations there is an increase in the stability in the physical interaction between χ and an EcoSSB/ssDNA complex when compared to that of χ to EcoSSB alone. This increase in stability disappeared in high salt conditions. The sedimentation of an EcoSSB protein lacking its C-terminal 26 amino acids remains unchanged in the presence of χ, showing that χ interacts specifically with the C-terminus of EcoSSB. In DNA melting experiments we demonstrate that χ specifically enhances the ssDNA stabilization by EcoSSB. Thus, the binding of EcoSSB to χ at the replication fork prevents premature dissociation of EcoSSB from the lagging strand and thereby enhances the processivity of DNA polymerase III.  相似文献   

5.
The single-stranded DNA binding protein (SSB) plays an important role in DNA replication, repair and recombination. To study the biochemical properties of SSB from Mycobacterium tuberculosis (MtuSSB), we have used the recently published genome sequence to clone the ssb open reading frame by PCR and have developed an overexpression system. Sequence comparison reveals that the MtuSSB lacks many of the highly conserved amino acids crucial for the Escherichia coli SSB (EcoSSB) structure-function relationship. A highly conserved His55, important for homotetramerization of EcoSSB is represented by a leucine in MtuSSB. Similarly, Trp40, Trp54 and Trp88 of EcoSSB required for stabilizing SSB-DNA complexes are represented by Ile40, Phe54 and Phe88 in MtuSSB. In addition, a group of positively charged amino acids oriented towards the DNA binding cleft in EcoSSB contains several nonconserved changes in MtuSSB. We show that in spite of these changes in the primary sequence MtuSSB is similar to EcoSSB in its biochemical properties. It exists as a tetramer, it has the same minimal size requirement for its efficient binding to DNA and its binding affinity towards DNA oligonucleotides is indistinguishable from that of EcoSSB. Furthermore, MtuSSB interacts with DNA in at least two distinct modes corresponding to the SSB35 and SSB56/65 modes of EcoSSB interaction with DNA. However, MtuSSB does not form heterotetramers with EcoSSB. MtuSSB therefore presents us with an interesting system with which to investigate further the role of the conserved amino acids in the biological properties of SSBs.  相似文献   

6.
The thermophilic bacterium Thermoanaerobacter tengcongensis has two single-stranded DNA-binding (SSB) proteins, designated TteSSB2 and TteSSB3. In a SSB complementation assay in Escherichia coli, only TteSSB3 took over the in vivo function of EcoSSB. We have cloned the ssb genes obtained by PCR and have developed E. coli overexpression systems. The TteSSB2 and TteSSB3 consist of 153 and 150 amino acids with a calculated molecular mass of 17.29 and 16.96 kDa, respectively. They are the smallest known bacterial SSB proteins. The homology between amino acid sequences of these proteins is 40% identity and 53% similarity. They are functional as homotetramers, with each monomer encoding one single-stranded DNA binding domain (OB-fold). In fluorescence titrations with poly(dT), both proteins bind single-stranded DNA with a binding site size of about 40 nt per homotetramer. Thermostability with half-life of about 30 s at 95 degrees C makes TteSSB3 similar to the known SSB of Thermus aquaticus (TaqSSB). The TteSSB2 was fully active even after 6 h incubation at 100 degrees C. Here, we show for the first time paralogous thermostable homotetrameric SSBs, which could be an attractive alternative for known homodimeric thermostable SSB proteins in their applications for molecular biology methods and analytical purposes.  相似文献   

7.
Single stranded DNA binding proteins (SSBs) are vital for the survival of organisms. Studies on SSBs from the prototype, Escherichia coli (EcoSSB) and, an important human pathogen, Mycobacterium tuberculosis (MtuSSB) had shown that despite significant variations in their quaternary structures, the DNA binding and oligomerization properties of the two are similar. Here, we used the X-ray crystal structure data of the two SSBs to design a series of chimeric proteins (mβ1, mβ1'β2, mβ1-β5, mβ1-β6 and mβ4-β5) by transplanting β1, β1'β2, β1-β5, β1-β6 and β4-β5 regions, respectively of the N-terminal (DNA binding) domain of MtuSSB for the corresponding sequences in EcoSSB. In addition, mβ1'β2(ESWR) SSB was generated by mutating the MtuSSB specific 'PRIY' sequence in the β2 strand of mβ1'β2 SSB to EcoSSB specific 'ESWR' sequence. Biochemical characterization revealed that except for mβ1 SSB, all chimeras and a control construct lacking the C-terminal domain (ΔC SSB) bound DNA in modes corresponding to limited and unlimited modes of binding. However, the DNA on MtuSSB may follow a different path than the EcoSSB. Structural probing by protease digestion revealed that unlike other SSBs used, mβ1 SSB was also hypersensitive to chymotrypsin treatment. Further, to check for their biological activities, we developed a sensitive assay, and observed that mβ1-β6, MtuSSB, mβ1'β2 and mβ1-β5 SSBs complemented E. coli Δssb in a dose dependent manner. Complementation by the mβ1-β5 SSB was poor. In contrast, mβ1'β2(ESWR) SSB complemented E. coli as well as EcoSSB. The inefficiently functioning SSBs resulted in an elongated cell/filamentation phenotype of E. coli. Taken together, our observations suggest that specific interactions within the DNA binding domain of the homotetrameric SSBs are crucial for their biological function.  相似文献   

8.
Phage λ Orf substitutes for the activities of the Escherichia coli RecFOR proteins in vivo and is therefore implicated as a recombination mediator, encouraging the assembly of bacterial RecA onto single-stranded DNA (ssDNA) coated with SSB. Orf exists as a dimer in solution, associates with E. coli SSB and binds preferentially to ssDNA. To help identify interacting domains we analysed Orf and SSB proteins carrying mutations or truncations in the C-terminal region. A cluster of acidic residues at the carboxy-terminus of SSB is known to attract multiple protein partners to assist in DNA replication and repair. In this case an alternative domain must be utilized since Orf association with SSB was unaffected by an SSB113 point mutant (P176S) or removal of the last ten residues (ΔC10). Structurally the Orf C-terminus consists of a helix with a flexible tail that protrudes from each side of the dimer and could serve as a binding site for either SSB or DNA. Eliminating the six residue flexible tail (ΔC6) or the entire helix (ΔC19) had no significant impact on the Orf-SSB interaction. However, the OrfΔC6 protein exhibited reduced DNA binding, a feature shared by single amino acid substitutions within (W141F) or adjacent (R140A) to this region. The OrfΔC19 mutant bound poorly to DNA and secondary structure analysis in solution revealed that this truncation induces protein misfolding and aggregation. The results show that the carboxy-terminus of Orf is involved in nucleic acid recognition and also plays an unexpected role in maintaining structural integrity.  相似文献   

9.
Uracil, a promutagenic base in DNA can arise by spontaneous deamination of cytosine or incorporation of dUMP by DNA polymerase. Uracil is removed from DNA by uracil DNA glycosylase (UDG), the first enzyme in the uracil excision repair pathway. We recently reported that the Escherichia coli single-stranded DNA binding protein (SSB) facilitated uracil excision from certain structured substrates by E. coli UDG (EcoUDG) and suggested the existence of interaction between SSB and UDG. In this study, we have made use of the chimeric proteins obtained by fusion of N- and C-terminal domains of SSBs from E. coli and Mycobacterium tuberculosis to investigate interactions between SSBs and UDGs. The EcoSSB or a chimera containing its C-terminal domain interacts with EcoUDG in a binary (SSB-UDG) or a ternary (DNA-SSB-UDG) complex. However, the chimera containing the N-terminal domain from EcoSSB showed no interactions with EcoUDG. Thus, the C-terminal domain (48 amino acids) of EcoSSB is necessary and sufficient for interaction with EcoUDG. The data also suggest that the C-terminal domain (34 amino acids) of MtuSSB is a predominant determinant for mediating its interaction with MtuUDG. The mechanism of how the interactions between SSB and UDG could be important in uracil excision repair pathway has been discussed.  相似文献   

10.
Single-stranded DNA-binding protein (SSB) is an essential protein necessary for the functioning of the DNA replication, repair and recombination machineries. Here we report the structure of the DNA-binding domain of Mycobacterium tuberculosis SSB (MtuSSB) in four different crystals distributed in two forms. The structure of one of the forms was solved by a combination of isomorphous replacement and anomalous scattering. This structure was used to determine the structure of the other form by molecular replacement. The polypeptide chain in the structure exhibits the oligonucleotide binding fold. The globular core of the molecule in different subunits in the two forms and those in Escherichia coli SSB (EcoSSB) and human mitochondrial SSB (HMtSSB) have similar structure, although the three loops exhibit considerable structural variation. However, the tetrameric MtuSSB has an as yet unobserved quaternary association. This quaternary structure with a unique dimeric interface lends the oligomeric protein greater stability, which may be of significance to the functioning of the protein under conditions of stress. Also, as a result of the variation in the quaternary structure the path adopted by the DNA to wrap around MtuSSB is expected to be different from that of EcoSSB.  相似文献   

11.
The structure of the homotetrameric DNA binding domain of the single stranded DNA binding protein from Escherichia coli (Eco SSB) bound to two 35-mer single stranded DNAs was determined to a resolution of 2.8 A. This structure describes the vast network of interactions that results in the extensive wrapping of single stranded DNA around the SSB tetramer and suggests a structural basis for its various binding modes.  相似文献   

12.
13.
Dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52) is a tetrameric enzyme that catalyses the first committed step of the lysine biosynthetic pathway. Dimeric variants of DHDPS have impaired catalytic activity due to aberrant protein motions within the dimer unit. Thus, it is thought that the tetrameric structure functions to restrict these motions and optimise enzyme dynamics for catalysis. Despite the importance of dimer-dimer association, the interface between subunits of each dimer is small, accounting for only 4.3% of the total monomer surface area, and the structure of the interface is not conserved across species. We have probed the tolerance of dimer-dimer association to mutation by introducing amino acid substitutions within the interface. All point mutations resulted in destabilisation of the ‘dimer of dimers’ tetrameric structure. Both the position of the mutation in the interface and the physico-chemical nature of the substitution appeared to effect tetramerisation. Despite only weak destabilisation of the tetramer by some mutations, catalytic activity was reduced to ∼10-15% of the wild-type in all cases, suggesting that the dimer-dimer interface is finely tuned to optimise function.  相似文献   

14.
The binding properties of the Escherichia coli encoded single strand binding protein (SSB) to a variety of synthetic homopolynucleotides, as well as to single stranded M13 DNA, have been examined as a function of the NaCl concentration (25.0 degrees C, pH 8.1). Quenching of the intrinsic tryptophan fluorescence of the SSB protein by the nucleic acid is used to monitor binding. We find that the site size (n) for binding of SSB to all single stranded nucleic acids is quite dependent on the NaCl concentration. For SSB-poly(dT), n = 33 +/- 3 nucleotides/tetramer below 10 mM NaCl and 65 +/- 5 nucleotides/tetramer above 0.20 M NaCl (up to 5 M). Between 10 mM and 0.2 M NaCl, the apparent site size increases continuously with [NaCl]. The extent of quenching of the bound SSB fluorescence by poly(dT) also displays two-state behavior, 51 +/- 3% quenching below 10 mM NaCl and 83 +/- 3% quenching at high [NaCl] (greater than 01.-0.2 M NaCl), which correlates with the observed changes in the occluded site size. On the basis of these observations as well as the data of Krauss et al. (Krauss, G., Sindermann, H., Schomburg, U., and Maass, G. (1981) Biochemistry 20, 5346-5352) and Chrysogelos and Griffith (Chrysogelos, S., and Griffith, J. (1982) Proc. Natl. Acad. Sci. U. S. A. 79,5803-5807) we propose a model in which E. coli SSB binds to single stranded nucleic acids in two binding modes, a low salt mode (n = 33 +/- 3), referred to as (SSB)33, in which the nucleic acid interacts with only two protomers of the tetramer, and one at higher [NaCl], n = 65 +/- 5, (SSB)65, in which the nucleic acid interacts with all 4 protomers of the tetramer. At intermediate NaCl concentrations a mixture of these two binding modes exists which explains the variable site sizes and other apparent discrepancies previously reported for SSB binding. The transition between the two binding modes is reversible, although the kinetics are slow, and it is modulated by NaCl concentrations within the physiological range. We suggest that SSB may utilize both binding modes in its range of functions (replication, recombination, repair) and that in vivo changes in the ionic media may play a role in regulating some of these processes.  相似文献   

15.
Restriction endonuclease Bse634I is a homotetramer arranged as a dimer of two primary dimers. Bse634I displays its maximum catalytic efficiency upon binding of two copies of cognate DNA, one per each primary dimer. The catalytic activity of Bse634I on a single DNA copy is down-regulated due to the cross-talking interactions between the primary dimers. The mechanism of signal propagation between the individual active sites of Bse634I remains unclear. To identify communication pathways involved in the catalytic activity regulation of Bse634I tetramer we mutated a selected set of amino acid residues at the dimer-dimer interface and analysed the oligomeric state and catalytic properties of the mutant proteins. We demonstrate that alanine replacement of N262 and V263 residues located in the loop at the tetramerisation interface did not inhibit tetramer assembly but dramatically altered the catalytic properties of Bse634I despite of the distal location from the active site. Kinetic analysis using cognate hairpin oligonucleotide and one and two-site plasmids as substrates allowed us to identify two types of communication signals propagated through the dimer-dimer interface in the Bse634I tetramer: the inhibitory, or "stopper" and the activating, or "sync" signal. We suggest that the interplay between the two signals determines the catalytic and regulatory properties of the Bse634I and mutant proteins.  相似文献   

16.
Mutating the histidine at position 55 present at the subunit interface of the tetrameric E. coli single stranded DNA binding (SSB) protein to tyrosine or lysine leads to cells which are UV- and temperature-sensitive. The defects of both ssbH55Y (ssb-1) and ssbH55K can be overcome by increasing protein concentration, with the ssbH55K mutation producing a less stable, readily dissociating protein whose more severe replication and repair phenotypes were less easily ameliorated by protein amplification. In this study we selected and analyzed E. coli strains where the temperature sensitivity caused by the ssbH55K mutation was suppressed by spontaneous mutations that changed the glutamine at position 76 or 110 to leucine. Using guanidinium chloride denaturation monitored by sedimentation diffusion equilibrium experiments in the analytical ultracentrifuge, we demonstrate that the double mutant SSBH55KQ76L and SSBH55KQ110L proteins form more stable homotetramers as compared to the SSBH55K single mutant protein although they are less stable than wild-type SSB. Additionally, the single mutant proteins SSBQ76L and SSBQ110L form tetramers which are more resistant to guanidinium denaturation than wild-type SSB protein.  相似文献   

17.
We present the results of in vitro DNA-binding assays for a mutant protein (Q44K) of the E. coli methionine repressor, MetJ, as well as the crystal structure at 2.2 A resolution of the apo-mutant bound to a 10-mer oligonucleotide encompassing an 8 bp met-box sequence. The wild-type protein binds natural operators co-operatively with respect to protein concentration forming at least a dimer of repressor dimers along operator DNAs. The minimum operator length is thus 16 bp, each MetJ dimer interacting with a single met-box site. In contrast, the Q44K mutant protein can also bind stably as a single dimer to 8 bp target sites, in part due to additional contacts made to the phosphodiester backbone outside the 8 bp target via the K44 side-chains. Protein-protein co-operativity in the mutant is reduced relative to the wild-type allowing the properties of an intermediate on the pathway to operator site saturation to be examined for the first time. The crystal structure of the decamer complex shows a unique conformation for the protein bound to the single met-box site, possibly explaining the reduced protein-protein co-operativity. In both the extended and minimal DNA complexes formed, the mutant protein makes slightly different contacts to the edges of DNA base-pairs than the wild-type, even though the site of amino acid substitution is distal from the DNA-binding motif. Quantitative binding assays suggest that this is not due to artefacts caused by the crystallisation conditions but is most likely due to the relatively small contribution of such direct contacts to the overall binding energy of DNA-protein complex formation, which is dominated by sequence-dependent distortions of the DNA duplex and by the protein-protein contact between dimers.  相似文献   

18.
The DNA and protein sequences of single-stranded DNA binding proteins (SSBs) encoded by the plP71a, plP231a, and R64 conjugative plasmids have been determined and compared to Escherichia coli SSB and the SSB encoded by F-plasmid. Although the amino acid sequences of all of these proteins are highly conserved within the NH2-terminal two-thirds of the protein, they diverge in the COOH-terminal third region. A number of amino acid residues which have previously been implicated as being either directly or indirectly involved in DNA binding are conserved in all of these SSBs. These residues include Trp-40, Trp-54, Trp-88, His-55, and Phe-60. On the basis of these sequence comparisons and DNA binding studies, a role for Tyr-70 in DNA binding is suggested for the first time. Although the COOH-terminal third of these proteins diverges more than their NH2-terminal regions, the COOH-terminal five amino acid residues of all five of these proteins are identical. In addition, all of these proteins share the characteristic property of having a protease resistant, NH2-terminal core and an acidic COOH-terminal region. Despite the high degree of sequence homology among the plasmid SSB proteins, the F-plasmid SSB appears unique in that it was the only SSB tested that neither bound well to poly(dA) nor was able to stimulate DNA polymerase III holoenzyme elongation rates. Poly [d(A-T)] melting studies suggest that at least three of the plasmid encoded SSBs are better helix-destabilizing proteins than is the E. coli SSB protein.  相似文献   

19.
Accurate replication and segregation of the bacterial genome are essential for cell cycle progression. We have identified a single amino acid substitution in the Caulobacter structural maintenance of chromosomes (SMC) protein that disrupts chromosome segregation and cell division. The E1076Q point mutation in the SMC ATPase domain caused a dominant-negative phenotype in which DNA replication was able to proceed, but duplicated parS centromeres, normally found at opposite cell poles, remained at one pole. The cellular positions of other chromosomal loci were in the wild-type order relative to the parS centromere, but chromosomes remained unsegregated and appeared to be stacked upon one another. Purified SMC-E1076Q was deficient in ATP hydrolysis and exhibited abnormally stable binding to DNA. We propose that SMC spuriously links the duplicated chromosome immediately after passage of the replication fork. In wild-type cells, ATP hydrolysis opens the SMC dimer, freeing one chromosome to segregate to the opposite pole. The loss of ATP hydrolysis causes the SMC-E1076Q dimer to remain bound to both chromosomes, inhibiting segregation.  相似文献   

20.
Single-stranded DNA binding proteins (SSBs) have been identified in all three domains of life. Here, we report the identification of a novel crenarchaeal SSB protein that is distinctly different from its euryarchaeal counterparts. Rather than comprising four DNA-binding domains and a zinc-finger motif within a single polypeptide of 645 amino acids, as for Methanococcus jannaschii, the Sulfolobus solfataricus SSB protein (SsoSSB) has a single DNA-binding domain in a polypeptide of just 148 amino acids with a eubacterial-like acidic C-terminus. SsoSSB protein was purified to homogeneity and found to form tetramers in solution, suggesting a quaternary structure analogous to that of E. coli SSB protein,despite possessing DNA-binding domains more similar to those of eukaryotic Replication Protein A (RPA). We demonstrate distributive binding of SsoSSB to ssDNA at high temperature with an apparent site size of approximately five nucleotides (nt)per monomer. Additionally, the protein is functional both in vitro and in vivo, stimulating RecA protein-mediated DNA strand-exchange and rescuing the ssb-1 lethal mutation of E. coli respectively. We discuss possible evolutionary relationships amongst the various members of the SSB/RPA family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号