首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3′-Azido-2′,3′-dideoxyuridine (AZDU, Azddu, CS-87) is a nucleoside analog of 3′-azido-3′-deoxythymidine (zidovudine, AZT) that has been shown to inhibit human immunodeficiency virus (HIV-1). AZDU is a potential candidate for treatment of pregnant mothers to prevent prenatal transmission of HIV/AIDS to their unborn children. A rapid and efficient high-performance liquid chromatography (HPLC) method for the determination of AZDU concentrations in rat maternal plasma, amniotic fluid, placental and fetal tissue samples has been developed and validated. Tissue samples were homogenized in distilled water, protein precipitated and extracted using a C-18 solid-phase extraction (SPE) method prior to analysis. Plasma and amniotic fluid samples were protein precipitated with 2 M perchloric acid prior to analysis. Baseline resolution was achieved using a 4.5% acetonitrile in 40 mM sodium acetate (pH 7) buffer mobile phase for amniotic fluid, placenta and fetus samples and with a 5.5% acetonitrile in buffer solution for plasma at flow-rates of 2.0 ml/min. The HPLC system consists of a Hypersil ODS column (150×4.6 mm) with a Nova-Pak C-18 guard column with detection at 263 nm. The method yields retention times of 6.2 and 12.2 min for AZDU and AZT in plasma and 8.3 and 17.6 min for AZDU and AZT in amniotic fluid, fetal and placental tissues. Limits of detection ranged from 0.01 to 0.075 μg/ml. Recoveries ranged from 81 to 96% for AZDU and from 82 to 96% for AZT in the different matrices. Intra-day (n=6) and inter-day (n=9) precision (% RSD) and accuracy (% Error) ranged from 1.48 to 6.25% and from 0.50 to 10.07%, respectively.  相似文献   

2.
We report here a rapid and sensitive technique for negative visualization of protein in 1D and 2D SDS‐PAGE by using 2′, 7′‐dichlorofluorescein (DCF), which appeared as transparent and colorless bands in an opaque gel matrix background. For DCF stain, down to 0.1–0.2 ng protein could be easily visualized within 7 min by only two steps, and the staining is fourfold more sensitive than that of Eosin Y (EY) negative stain and glutaraldehyde (GA) silver stain, and eightfold more sensitive than that of the commonly used imidazole‐zinc (IZ) negative stain. Furthermore, DCF stain provided good reproducibility, linearity, and MS compatibility compared with those of IZ stain. In addition, the potential staining mechanism was investigated by colorimetric experiment and molecular docking, and the results demonstrated that the interaction between DCF and protein occurs mainly via van der waals force, electrostatic interaction, and hydrogen bonding.  相似文献   

3.
The site of inhibition of chlorophyll biosynthesis by α′,α′-dipyridyl was found to be at the level of conversion of chlorophyllide (672 nm) to chlorophyll (678 nm) during greening of groundnut leaves. This inhibition was partially reversed by certain divalent cations.  相似文献   

4.
Abstract: The binding of 2′,3′-cyclic nucleotide 3′-phosphodiesterase isoform 1 (CNP1) to myelin and its association with cytoskeletal elements of the sheath have been characterized with in vitro synthesized polypeptides and purified myelin. We have previously shown that the cysteine residue present in the carboxy-terminal CXXX box of CNP1 is isoprenylated, and that both C15 farnesyl and C20 geranylgeranyl isoprenoids can serve as substrates for the modification. Here, we have mutated the CXXX box to obtain selectively farnesylated CNP1 or geranyl-geranylated CNP1 and found that these two modified forms of CNP1 behave identically in all of the assays performed. Isoprenylation is essential but not sufficient for the binding of in vitro synthesized CNP1 to purified myelin, because a control nonmyelin protein is isoprenylated, yet unable to bind to myelin. In our assay, membrane-bound CNP1 partitions quantitatively into the non-ionic detergent-insoluble phase of myelin, suggesting that CNP1 binds to cytoskeletal elements within myelin. However, isoprenylated CNP1 fails to bind to the cytoskeletal matrix isolated from myelin by detergent treatment, implying that both detergent-soluble and insoluble myelin components are involved in the binding of CNP1. A model for the interactions between CNP1 and myelin is presented, consistent with models proposed for other isoprenylated proteins.  相似文献   

5.
A dichloromethane extract from the leaves of Lithraea molleoides (Anacardiaceae), an argentine medicinal plant, showed cytotoxicity on human hepatocellular carcinoma cell line. Bioassay guided fractionation of this extract led to the isolation of a new active 5-alkyl resorcinol: 1,3-dihydroxy-5-(tridec-4',7'-dienyl)benzene. Chemical structure was established based on spectroscopic data (UV, IR, MS, 1H-NMR, 13C-NMR, COSY). This compound presented cytotoxic activity on 3 human tumoral cell lines: hepatocellular carcinoma cell line-Hep G2 (IC50 +/- SD of 68 +/- 2 microM), mucoepidermoid pulmonary carcinoma cell line-H292 (IC50 +/- SD of 63 +/- 5 microM) and mammary gland adenocarcinoma cell line -MCF7 (IC50 +/- SD of 147 +/- 5).  相似文献   

6.
The structural elucidation of 1′,2′-dideacetylboronolide, 5,6-dihydro-6-(3′-acetoxy-1′,2′-dihydroxyheptyl)2-pyrone, a new α-pyrone isolated from the leaves of Iboza riparia has been performed. Additionally, three sterols, sitosterol, stigmasterol and campesterol, have been identified in this species.  相似文献   

7.
Syntheses of the title compounds--commonly known as 'daidzein 7-glucuronide' and 'daidzein 4',7-diglucuronide'--are described. Selective 7-deacetylation of 4',7-di-O-acetyldaidzein is employed.  相似文献   

8.
In addition to the neurotoxic effects of β, β′-iminodipropionitrile (IDPN) which have been previously reported by other investigators, the olfactory toxicity of this compound has recently been uncovered in this laboratory. Due to the apparently conflicting observations that the IDPN-induced lesion in the olfactory mucosa is very focal in nature (suggesting site-specific activation) and the observation by other investigators that the behavioral effects of IDPN appear to be due to the parent compound, we initiated studies into the possible role of the cytochrome P450 enzymes in the olfactory toxicity of IDPN. Immunohistochemical studies with antibodies raised against several different P450 isoforms revealed good correlation between IDPN-induced olfactory mucosal degeneration and the localization of a protein immunoreacting with an antibody to P450 2E1. Enzymatic studies revealed that there is approximately fivefold more ρ-nitrophenol hydroxylation activity in the olfactory mucosa than in the liver on a per milligram microsomal protein basis. Administration of 1% acetone in the drinking water increased the levels of olfactory mucosal 2E1, and the increase in enzyme levels corresponded to increased olfactory toxicity of IDPN; inhibition of P450 activities with either metyrapone or carbon tetrachloride eliminated or significantly decreased the olfactory toxicity of IDPN, respectively. These studies suggest a role for cytochrome P450, specifically the 2E1 isoform, in the activation of IDPN within the nasal mucosa.  相似文献   

9.
The synthesis of a new minimum steric perturbing proxyl nitroxide, which is a derivative of glycerol and contains a stearic acid moiety, has been carried out. Its localization in model membrane -α-dipalmitoyl phosphatidyl choline (DPPC) was ascertained with the help of ESR, DSC, 1H and 31P NMR techniques. The nitroxide was used for detecting the changes in the phase transition temperature of the model membranes in the presence and absence of drugs. The permeation of the vasodilating drug epinephrine has also been studied using this spin label. The results prove the potential applicability of the new spin probe in the spin labeling of biomembranes.  相似文献   

10.
We have studied the mechanisms of breakdown of 2'-5' oligoadenylates. We monitored the time-courses of degradation of ppp(A2'p5')nA (dimer to tetramer) and of 5'OH-(A2'p5')nA (dimer to pentamer) in unfractionated L1210 cell extract. The 5' triphosphorylated 2'-5' oligoadenylates are converted by a phosphatase activity. However, 2'-5' oligoadenylates are degraded mainly by phosphodiesterase activity which splits the 2'-5' phosphodiester bond sequentially at the 2' end to yield 5' AMP and one-unit-shorter oligomers. The nonlinear least-squares curve-fitting program CONSAM was used to fit these kinetics and to determine the degradation rate constant of each oligomer. Trimers and tetramers, whether 5' triphosphorylated or not, are degraded at the same rate, whereas 5' triphosphorylated dimer is rapidly hydrolyzed and 5'-OH dimer is the most stable oligomer. The interaction between degradation enzymes and the substrate strongly depends on the presence of a 5' phosphate group in the vicinity of the phosphodiester bond to be hydrolyzed; indeed, when this 5' phosphate group is present, as in pp/pA2'p5'A/or A2'/p5'A2'p5'A/, affinity is high and maximal velocity is low. Such a degradation pattern can control the concentration of 2'-5' oligoadenylates active on RNAse L either by limiting their synthesis (5' triphosphorylated dimer is the primer necessary for the formation of longer oligomers) and/or by converting them into inhibitory (e.g., monophosphorylated trimer) or inactive (e.g., nonphosphorylated oligomers) molecules.  相似文献   

11.
Oxysterols, such as 7β‐hydroxy‐cholesterol (7β‐OH) and cholesterol‐5β,6β‐epoxide (β‐epoxide), may have a central role in promoting atherogenesis. This is thought to be predominantly due to their ability to induce apoptosis in cells of the vascular wall and in monocytes/macrophages. Although there has been extensive research regarding the mechanisms through which oxysterols induce apoptosis, much remains to be clarified. Given that experimental evidence has long associated alterations of calcium (Ca2+) homeostasis to apoptotic cell death, the aim of the present study was to determine the influence of intracellular Ca2+ changes on apoptosis induced by 7β‐OH and β‐epoxide. Ca2+ responses in differentiated U937 cells were assessed by epifluorescence video microscopy, using the ratiometric dye fura‐2. Over 15‐min exposure of differentiated U937 cells to 30 μM of 7β‐OH induced a slow but significant rise in fura‐2 ratio. The Ca2+ channel blocker nifedipine and the chelating agent EGTA blocked the increase in cytoplasmic Ca2+. Moreover, dihydropyridine (DHP) binding sites identified with BODIPY‐FLX‐DHP were blocked following pretreatment with nifedipine, indicating that the influx of Ca2+ occurred through L‐type channels. However, following long‐term incubation with 7β‐OH, elevated levels of cytoplasmic Ca2+ were not maintained and nifedipine did not provide protection against apoptotic cell death. Our results indicate that the increase in Ca2+ may be an initial trigger of 7β‐OH–induced apoptosis, but following chronic exposure to the oxysterol, the influence of Ca2+ on apoptotic cell death appears to be less significant. In contrast, Ca2+ did not appear to be involved in β‐epoxide–induced apoptosis. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:324–332, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20295  相似文献   

12.
A rapid, sensitive and specific high-performance liquid chromatographic (HPLC) assay was developed and validated for the measurement of (−)-2′-deoxy-3′-thiacytidine (3TC) in human serum. The method included precipitation of serum proteins by trichloroacetic acid (20%, w/v) treatment followed by centrifugation. The resulting supernatant was directly injected and 3TC was isocratically chromatographed on a reversed-phase C18 column using a mixture of phosphate buffer and methanol (88.3:11.7, v/v) and monitored at 280 nm. The limit of quantitation was 20 ng/ml using 100 μl of serum. The standard curve was linear within the range of 20–10 000 ng/ml. Replicate analysis of three quality control samples (40–1500 ng/ml) led to satisfactory intra- and itner-assay precision (coefficient of variation from 3.0 to 12.9%) and accuracy (deviation from −6.3 to 9.7%). Moreover, sample treatment processes including human immunodeficiency virus (HIV) heat-inactivation, exposure at room temperature and freezing-thawing cycles did not influence the stability of the analyte. This assay was successfully applied to the determination of 3TC serum levels in HIV-infected patients. In addition, preliminary results indicated that this procedure may also be extended to the measurement of 3TC in human plasma and urine.  相似文献   

13.
14.
Inflammation and reactive oxygen species (ROS) are important factors in the pathogenesis of atherosclerosis (AS). 5,2′‐dibromo‐2,4′,5′‐trihydroxydiphenylmethanone (TDD), possess anti‐atherogenic properties; however, its underlying mechanism of action remains unclear. Therefore, we sought to understand the therapeutic molecular mechanism of TDD in inflammatory response and oxidative stress in EA.hy926 cells. Microarray analysis revealed that the expression of homeobox containing 1 (HMBOX1) was dramatically upregulated in TDD‐treated EA.hy926 cells. According to the gene ontology (GO) analysis of microarray data, TDD significantly influenced the response to lipopolysaccharide (LPS); it suppressed the LPS‐induced adhesion of monocytes to EA.hy926 cells. Simultaneously, TDD dose‐dependently inhibited the production or expression of IL‐6, IL‐1β, MCP‐1, TNF‐α, VCAM‐1, ICAM‐1 and E‐selectin as well as ROS in LPS‐stimulated EA.hy926 cells. HMBOX1 knockdown using RNA interference attenuated the anti‐inflammatory and anti‐oxidative effects of TDD. Furthermore, TDD inhibited LPS‐induced NF‐κB and MAPK activation in EA.hy926 cells, but this effect was abolished by HMBOX1 knockdown. Overall, these results demonstrate that TDD activates HMBOX1, which is an inducible protective mechanism that inhibits LPS‐induced inflammation and ROS production in EA.hy926 cells by the subsequent inhibition of redox‐sensitive NF‐κB and MAPK activation. Our study suggested that TDD may be a potential novel agent for treating endothelial cells dysfunction in AS.  相似文献   

15.
Diadenosine 5′,5′”-P1,P4-tetraphosphate (Ap4A) cleaving enzymes are assumed to regulate intracellular levels of Ap4A, a compound known to affect cell proliferation and stress responses. From plants an Ap4A hydrolase was recently purified using tomato cells grown in suspension. It was partially sequenced and a peptide antibody was prepared (Feussner et al., 1996). Using this polyclonal monospecific antibody, an abundant nuclear location of Ap4A hydrolase in 4-day-old cells of atomato cell suspension culture is demonstrated here by means of immunocytochemical techniques using FITC (fluorescein-5-isothiocyanate) labeled secondary antibodies. The microscopic analysis of the occurrence of Ap4A hydrolase performed for different stages of the cell cycle visualized by parallel DAPI (4,6-diamidino-2-phenylindole) staining revealed that the protein accumulates within nuclei of cells in the interphase, but is absent in the nucleus as well as cytoplasm during all stages of mitosis. This first intracellular localization of an Ap4A degrading enzyme within the nucleus and its pattern of appearance during the cell cycle is discussed in relation to the suggested role of Ap4A in triggering DNA synthesis and cell proliferation.  相似文献   

16.
In the X-ray structure of the staphylococcal nuclease–Ca2+ ?3′,5′-pdTp complex, the conformation of the inhibitor 3′,5′-pdTp is distroteed Lys-70* and Lys-71* from an adjacent molecule of staphylococcal nuclease (Loll, P.J., Lattman, E.E. Proteins 5 : 183-201, 1989). In order to correct this crystal packing problem, the solution conformation of enzyme-bound 3′,5′-pdTp in the staphylococcal nuclease–metal–pdTp Complex determined by NMR methods was docked into the X-ray structure of the enzyme [Weber, D. J., Serpersu, E. H., Gittis, A. G., Lattman, E. E., Mildvan, A. S. (preceding paper)]. In the NMR-docked structure, the 5′-phophate of 3′,5′-pdTp overlaps with that in the X-ray Structure. However the 3′-phosphate accepts a hydrogen bond from Lys-49 (2.89Å) rather than from Lys-84 (8.63 Å), and N3 of thymine donates a hydrogen bond to the OH of Tyr-115 (3.16 Å) which does not occur in the X-ray structure (5.28 Å). These interactions have been tested by binding studies of 3′,5′-pdTp, Ca2+, and Mn2+ to the K49A, K84A, and Y115A mutants of staphylococcal nuclease using water proton relaxation rate and EPR methods. Each mutant was fully active and structurally intact, as found by CD and two-dimensional NMR spectroscopy, but bound Ca2+ 9.1- to 9.9-fold more weakly than the wild-type enzyme. While thye K84A mutation did not significantly weaken 3′,5′-pdTp binding to the enzyme (1.5 ± 0.7 fold), the K49A mutation weakened 3′,5′-pdTp binding to the enzyme by the factor of 4.4 ± 1.8-fold. Similarly, the Y115A mutation weakened 3′,5′-pdTp binding to the enzyme 3.6 ± 1.6-fold. Comparable weakening effects of these mutations were found on the binding of Ca2+-3′,5′-pdTp. These results are more readily explained by the NMR-docked structure of staphylococcal nuclease-metal-3′,5′-pdTp than by the X-ray structure. © 1993 Wiley-Liss, Inc.  相似文献   

17.
Methyl jasmonate (MeJA) signalling shares several signal components with abscisic acid (ABA) signalling in guard cells. Cyclic adenosine 5′‐diphosphoribose (cADPR) and cyclic guanosine 3′,5′‐monophosphate (cGMP) are second messengers in ABA‐induced stomatal closure. In order to clarify involvement of cADPR and cGMP in MeJA‐induced stomatal closure in Arabidopsis thaliana (Col‐0), we investigated effects of an inhibitor of cADPR synthesis, nicotinamide (NA), and an inhibitor of cGMP synthesis, LY83583 (LY, 6‐anilino‐5,8‐quinolinedione), on MeJA‐induced stomatal closure. Treatment with NA and LY inhibited MeJA‐induced stomatal closure. NA inhibited MeJA‐induced reactive oxygen species (ROS) accumulation and nitric oxide (NO) production in guard cells. NA and LY suppressed transient elevations elicited by MeJA in cytosolic free Ca2+ concentration ([Ca2+]cyt) in guard cells. These results suggest that cADPR and cGMP positively function in [Ca2+]cyt elevation in MeJA‐induced stomatal closure, are signalling components shared with ABA‐induced stomatal closure in Arabidopsis, and that cADPR is required for MeJA‐induced ROS accumulation and NO production in Arabidopsis guard cells.  相似文献   

18.
A method for the quantification of 2′-deoxy-3′-thiacytidine (lamivudine, 3-TC), which incorporated the use of 3-isobutyl-methylxanthine as internal standard (I.S.) was developed and validated in human plasma, using HPLC with UV absorbance detection. Using solid-phase extraction, 3-TC and I.S. were selectively extracted from human plasma. Subsequently, chromatographic separation was performed using a YMC phenyl column with ion-pair chromatography and detection at 270 nm. The method was validated over a concentration range of 10 to 5000 ng/ml using 0.5 ml of human plasma. The extraction recovery for both 3-TC and I.S. was greater than 95%. The determination of inter- and intra-day precision (RSD) was less than 10% at all concentration levels, while the inter- and intra-day accuracy (% difference) was less than 6%.  相似文献   

19.
In anterior pituitaries from male rats, it appeared that 5α-androstane-3β, 17β-diol was quickly metabolized into 5α-androstane-3β,6α-17β-triol and 5α-androstane-3β,7α, 17β-triol by action of 6α- and 7α-hydroxylases. Hydroxysteroid hydroxylases were located in endoplasmic reticulum and were dependent on NADPH+. Their optimum pH was 8.0, optima temperature, 37°C, and their apparent Km was 2.7 μM. Hydroxylative reactions were not reversible and not modified by gonadectomy. Hydroxylation seemed an efficient control of the pituitary level of 5α-andros-tane-3β, 17β-diol.  相似文献   

20.
Synthesis and anti-inflammatory effects of certain furo[3′,2′:3,4]naphtho[1,2-d]imidazole derivatives 1218 were studied. These compounds were synthesized from naphtho[1,2-b]furan-4,5-dione (10) which in turn was prepared from the known 2-hydoxy-1,4-naphthoquinone (7) in a one pot reaction. Furo[3′,2′:3,4]naphtho[1,2-d]imidazole (12) was inactive (IC50 value of >30 μM) while its 5-phenyl derivative 13, with an IC50 value of 16.3 and 11.4 μM against lysozyme and β-glucuronidase release, respectively, was comparable to the positive trifluoperazine. The same potency was observed for 5-furan derivative 16 with an IC50 value of 19.5 and 11.3 μM against lysozyme and β-glucuronidase release, respectively. An electron-withdrawing NO2 substituted on 5-phenyl or 5-furanyl group led to the devoid of activity as in the cases of 14 and 17. Among them, compound 15 exhibited significant inhibitory effects, with an IC50 value of 7.4 and 5.0 μM against lysozyme and β-glucuronidase release, respectively.For the LPS-induced NO production, the phenyl derivatives 12–15 were inactive while the nitrofuran counterparts 17 and 18 suppress LPS-induced NO production significantly, with an IC50 value of 1.5 and 1.3 μM, respectively, which are more active than that of the positive 1400 W. Compounds 16–18 were capable of inhibiting LPS-induced iNOS protein expression at a dose-dependent manner in which compound 18, with an IC50 of 0.52 μM in the inhibition of iNOS expression, is approximately fivefold more potent than that of the positive 1400 W. In the CLP rat animal model, compound 18 was found to be more active than the positive hydrocortisone in the inhibition of the iNOS mRNA expression in rat lung tissue. The sepsis-induced PGE2 production in rat serum decreased 150% by the pretreatment of 18 in a dose of 10 mg/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号