首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanobiotechnology is the convergence of engineering and molecular biology that is leading to a new class of multifunctional devices and systems for biological and chemical analysis with better sensitivity and specificity and a higher rate of recognition. Nano-objects with important analytical applications include nanotubes, nanochannels, nanoparticles, nanopores and nanocapacitors. Here, we take a critical look at the subset of recent developments in this area relevant to molecular recognition. Potential benefits of using nano-objects (nanotubes, quantum dots, nanorods and nanoprisms) and nanodevices (nanocapacitors, nanopores and nanocantilevers) leading to an expanded range of label multiplexing are described along with potential applications in future diagnostics. We also speculate on further pathways in nanotechnology development and the emergence of order in this somewhat chaotic, yet promising, new field.  相似文献   

2.
Nanobiotechnology is an exciting research area and raises not only high expectations for future health care and other applications, but also some concerns. In order to achieve acceptance of the expected technological benefits by the public, their impact on individuals and the society should openly be discussed now. This discussion should go beyond the presently dominated debate on adverse effects of nanoparticles.  相似文献   

3.

Background

Nanobiotechnology is the application of nanotechnology in biological fields. Nanotechnology is a multidisciplinary field that currently recruits approach, technology and facility available in conventional as well as advanced avenues of engineering, physics, chemistry and biology.

Method

A comprehensive review of the literature on the principles, limitations, challenges, improvements and applications of nanotechnology in medical science was performed.

Results

Nanobiotechnology has multitude of potentials for advancing medical science thereby improving health care practices around the world. Many novel nanoparticles and nanodevices are expected to be used, with an enormous positive impact on human health. While true clinical applications of nanotechnology are still practically inexistent, a significant number of promising medical projects are in an advanced experimental stage. Implementation of nanotechnology in medicine and physiology means that mechanisms and devices are so technically designed that they can interact with sub-cellular (i.e. molecular) levels of the body with a high degree of specificity. Thus therapeutic efficacy can be achieved to maximum with minimal side effects by means of the targeted cell or tissue-specific clinical intervention.

Conclusion

More detailed research and careful clinical trials are still required to introduce diverse components of nanobiotechnology in random clinical applications with success. Ethical and moral concerns also need to be addressed in parallel with the new developments.  相似文献   

4.
For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble protein from wheat and corn; legumin is a casein-like protein from leguminous seeds such as peas; lectins are glycoproteins naturally occurring in many plants that recognize specific carbohydrate residues. NPs formed from these proteins show good biocompatibility, possess the ability to enhance solubility, and provide sustained release of drugs and reduce their toxicity and side effects. The effects of preparation methods on the size and loading capacity of these NPs are also described in this review.  相似文献   

5.
Nanobiotechnology is defined as an interdisciplinary field of science that studies the application of fine-sized biological objects (of nanoscale, 1–100 nm) to design the devices and systems of the same size that utilize for new purposes the unusual, known, or previously unknown effects. Analysis demonstrates that the final goals, approaches, solution methods, and applications of nanostructures and biological sensors have much in common. This brief review attempts to systematize a number of the available data and pick out an organic connection of the new research direction with the field of biosensor technology, which have reached the level of sustainable development.  相似文献   

6.
Nanobiotechnology is defined as an interdisciplinary field of science that studies the application of fine-sized biological objects (of nanoscale, 1-100 nm) to design the devices and systems of the same size that utilize for new purposes the unusual, known, or previously unknown effects. Analysis demonstrates that the final goals, approaches, solution methods, and applications of nanostructures and biological sensors have much in common. This brief review attempts to systematize a number of the available data and pick out an organic connection of the new research direction with the field of biosensor technology, which have reached the level of sustainable development.  相似文献   

7.
Nanobiotechnology is a new direction in the technological science, which plays a key role in creation of nanodevices for analysis of living systems on a molecular level. Nanomedicine is the application of nanotechnologies in medicine for maintenance and improvement of human life using the knowledge on human organism at the molecular level. Application of nanoparticles and nanomaterials for the diagnostic and therapeutic purposes is now significantly extended in nanomedicine. Use of nanotechnological approaches and nanomaterials opens new prospects for creation of drugs and systems for their directed delivery. Implementation of optical biosensor, atomic force, nanowire and nanoporous approaches into genomics and proteomics will significantly enhance the sensitivity and accuracy of diagnostics and will shorten the time of diagnostic procedures that will undoubtedly improve the efficiency of medical treatment. The review highlights recent data on application of nanobiotechnologies in the field of diagnostics and creation of new drugs.  相似文献   

8.
Studies on biological synthesis techniques of nanoparticles have been significantly expanded in recent years. This reduced adverse effects of chemical processing techniques. We describe the synthesis and characterization of gold nanoparticles from marine Micrococcus sp. OUS9 for potential application in nanobiotechnology.  相似文献   

9.
Nanobiotechnology focuses on the biological effects and applications of nanoparticles that include nano-safety, drug encapsulation and nanotherapeutics. The present study focuses on hydrophilic nanospheres of copolymers N-isopropylacrylamide [NIPAAM] and vinyl pyrrolidone [VP], encapsulating a bioactive derivative of 5-fluorouracil-hexyl-carbamoyl fluorouracil (HCFU). The size of the nanospheres was approximately 58 nm and the surface charge measured was -15.4 mV. Under optimal conditions, the yield was >80%, and the drug loading was 2%. The entrapment efficiency was approximately 75%. Wide-angle X-ray diffraction analysis showed that the entrapped HCFU was present in an amorphous state, which has higher water solubility compared with the crystalline state. Slow drug release from nanospheres was observed in PBS and serum, with approximately 80% released at 37 degrees C after 72 h. The HCFU loaded polymeric nanospheres have been found to be stable in whole blood having negligible RBC toxicity. Cytotoxicity in Mia-Paca 3, pancreatic cancer cell line was done in a 24-72 h assay. Dose dependant cytotoxicity was observed when incubated with various concentrations of HCFU loaded polymeric nanospheres while HCFU per se (<1 mg) showed 90% toxicity within 24 h.  相似文献   

10.
JBIC Journal of Biological Inorganic Chemistry - In recent years, the industrial use of ZnO quantum dots (QDs) and nanoparticles (NPs) has risen and there is a high chance of these nanoparticles...  相似文献   

11.
Nanobiotechnology provides novel set of tools to manipulate and enhance crop production using nanoparticles, nanofibres, nanoemulsions, and nanocapsules. Nanomaterials provide a platform to deliver agrochemicals and various macromolecules needed for plant growth enhancement and resistance to stresses. Smart delivery of agrochemicals increases the yield by optimizing water and nutrient conditions. Another added advantage is controlled release and site-directed delivery of agrochemicals. Further enhancement in quality and quantity in agriculture can be achieved by nanoparticle-mediated gene transformation and delivery of macromolecules that induces gene expression in plants. Various types of nanomaterials have been tested so far and the results have been promising in terms of productivity and quality enhancement.  相似文献   

12.
Journal of Evolutionary Biochemistry and Physiology - Among the available nanoparticles, those based on iron oxide are of particular interest due to their biological safety, magnetic properties,...  相似文献   

13.
氮化合物在生命代谢过程中扮演着重要的角色,但过多的无机氮会导致水体恶化进而影响人类健康,生物脱氮技术可高效去除环境中的无机氮且不引起二次污染.随着工程纳米颗粒在生活中的广泛应用,导致其大量释放到土壤及水体中,极大地阻碍了废水处理中的生物脱氮过程,因此,微生物脱氮过程中工程纳米颗粒的毒害作用及减毒措施成了近年来的研究热点...  相似文献   

14.
Silver nanoparticles (Ag-NPs) are known to have inhibitory and fungicidal effects. Resistance against fungal infection has emerged as a major health problem in recent years, which needs great and immediate concern. Here, we report the extracellular biological synthesis of silver nanoparticles through a simple green route approach using a marine mangrove (Rhizophora mucronata) and silver nitrate. Aqueous extract of marine mangrove helped in reduction and was used as capping agent in biological synthesis. Nanoparticles were characterized using microscopy and spectroscopy techniques such as HRTEM, UV–Vis absorption spectroscopy and FTIR spectroscopy. X-ray diffraction analysis showed that the nanoparticles had face centered cubic structure with crystalline nature. FTIR spectroscopy showed the presence of different functional groups, such as hydroxyl and carbonyl, involved in the synthesis of nanoparticles. The antifungal activity of fluconazole and itraconazole was enhanced against the tested pathogenic fungi in the presence of Ag-NP and confirmed from increase in fold area of inhibition. This environmentally friendly method of biological synthesis can be easily integrated for various medical applications.  相似文献   

15.
Engineered nanoparticles that can facilitate drug formulation and passively target tumours have been under extensive research in recent years. These successes have driven a new wave of significant innovation in the generation of advanced particles. The fate and transport of diagnostic nanoparticles would significantly depend on nonselective drug delivery, and hence the use of high drug dosage is implemented. In this perspective, nanocarrier-based drug targeting strategies can be used which improve the selective delivery of drugs to the site of action, i.e. drug targeting. Pharmaceutical industries majorly focus on reducing the toxicity and side effects of drugs but only recently it has been realised that carrier systems themselves may pose risks to the patient. Proteins are compatible with biological systems and they are biodegradable. They offer a multitude of moieties for modifications to tailor drug binding, imaging or targeting entities. Thus, protein nanoparticles provide outstanding contributions as a carrier for drug delivery systems. This review summarises recent progress in particle-based therapeutic delivery and discusses important concepts in particle design and biological barriers for developing the next generation of particles drug delivery systems.  相似文献   

16.
Nanobiotechnology is emerging as a new frontier of biotechnology. The potential applications of nanobiotechnology in bioenergy and biosensors have encouraged researchers in recent years to investigate new novel nanoscaffolds to build robust nanobiocatalytic systems. Enzymes, mainly hydrolytic class of enzyme, have been extensively immobilised on nanoscaffold support for long-term stabilisation by enhancing thermal, operational and storage catalytic potential. In the present report, novel nanoscaffold variants employed in the recent past for enzyme immobilisation, namely nanoparticles, nanofibres, nanotubes, nanopores, nanosheets and nanocomposites, are discussed in the context of lipase-mediated nanobiocatalysis. These nanocarriers have an inherently large surface area that leads to high enzyme loading and consequently high volumetric enzyme activity. Due to their high tensile strengths, nanoscale materials are often robust and resistant to breakage through mechanical shear in the running reactor making them suitable for multiple reuses. The optimisation of various nanosupports process parameters, such as the enzyme type and selection of suitable immobilisation method may help lead to the development of an efficient enzyme reactor. This might in turn offer a potential platform for exploring other enzymes for the development of stable nanobiocatalytic systems, which could help to address global environmental issues by facilitating the production of green energy. The successful validation of the feasibility of nanobiocatalysis for biodiesel production represents the beginning of a new field of research. The economic hurdles inherent in viably scaling nanobiocatalysts from a lab-scale to industrial biodiesel production are also discussed.  相似文献   

17.
Bioprocess and Biosystems Engineering - Nanotechnology is a rapidly developing field because of its wide range of applications in science, nanoscience and biotechnology. Nanobiotechnology deals...  相似文献   

18.
Russian Journal of Plant Physiology - Due to the antifungal and antibacterial properties, silver nanoparticles (AgNPs) are now widely used in consumer products. In this research, the effects of...  相似文献   

19.
Journal of Mathematical Biology - The formation of spatially patterned structures in biological organisms has been modelled in recent years by various mechanisms, including pairs of...  相似文献   

20.
Nanotechnology is set to impact a vast range of fields, including computer science, materials technology, engineering/manufacturing and medicine. As nanotechnology grows so does exposure to nanostructured materials, thus investigation of the effects of nanomaterials on biological systems is paramount. Computational techniques can allow investigation of these systems at the nanoscale, providing insight into otherwise unexaminable properties, related to both the intentional and unintentional effects of nanomaterials. Herein, we review the current literature involving computational modelling of nanoparticles and biological systems. This literature has highlighted the common modes in which nanostructured materials interact with biological molecules such as membranes, peptides/proteins and DNA. Hydrophobic interactions are the most favoured, with π-stacking of the aromatic side-chains common when binding to a carbonaceous nanoparticle or surface. van der Waals forces are found to dominate in the insertion process of DNA molecules into carbon nanotubes. Generally, nanoparticles have been observed to disrupt the tertiary structure of proteins due to the curvature and atomic arrangement of the particle surface. Many hydrophobic nanoparticles are found to be able to transverse a lipid membrane, with some nanoparticles even causing mechanical damage to the membrane, thus potentially leading to cytotoxic effects. Current computational techniques have revealed how some nanoparticles interact with biological systems. However, further research is required to determine both useful applications and possible cytotoxic effects that nanoparticles may have on DNA, protein and membrane structure and function within biosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号