首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In territorial animals that hide to avoid predators, a predatory attack creates a conflict because a hiding animal cannot defend its territory from conspecific intruders. When intruders are persistent, a past conspecific intrusion informs a territorial resident that future intrusions by the same animal are likely. Using a mathematical model, I examine the effects that past territorial intrusions can have on antipredator behaviour. Past territorial intrusions rarely affect a resident animal's time to hide (the optimal behaviour is to hide as soon as the predator initiates its attack). In contrast, past intrusions should shorten the length of time during which territory holders remain in hiding, with the magnitude of this effect depending on the time of the predator's attack, the re-intruder's pattern of return, and the intrusion rates of other conspecifics. The results of the model show that we need more information on patterns of re-intruders' behaviour, and emphasize that a similar functional explanation could underlie other behavioural changes following territorial and/or aggressive encounters (such as winner/loser effects or changes in display frequency and territorial vigilance). Differences between my findings and those from previous studies suggest that the trade-off between antipredator behaviour and territorial defence can involve different costs from the trade-off between antipredator behaviour and foraging.  相似文献   

5.
 A simple mathematical model describing the generation and propagation of epileptiform activity in a cerebral cortical network is presented. The model consists of a system of nonlinear delay differential equations. Physiological properties are taken into account as nonlinear transmission of signals at the synapse, temporal and spatial summation of incoming signals at the soma, active membrane characteristics, and dendritic and axonal propagation times. The influence of the connectivity and the temporal parameters on the oscillatory properties of the model is studied. The computer simulations are in agreement with experimental observations in cortical networks: whereas a weak excitatory or strong inhibitory synaptic connection strength produces a stationary status with short-lasting responses to external stimuli, increases in excitation or decreases in inhibition induce spontaneous and stimulus-evoked rhythmic discharges. Synaptic burst-like activity is observed only for an intermediate range of excitatory and inhibitory connection strengths and external inputs. The form and duration of the bursts can also be controlled by the temporal parameters. The results demonstrate that relatively simple mathematical equations are sufficient to model some of the network properties underlying the generation and propagation of epileptiform activity. Received: 2 October 2000 / Accepted in revised form: 4 March 2001  相似文献   

6.
7.
8.
Ketone body kinetics in humans: a mathematical model   总被引:2,自引:0,他引:2  
A model has been developed to account for ketone body kinetics in man based on data following bolus injections of [14C]acetoacetate (A) and [14C]beta-OH butyrate (B) into normal humans in the postabsorptive state. The model consists of separate compartments for blood A and B that are linked by a tissue compartment in which rapid interconversion of the ketone bodies occurs. The probability of movement from blood into this compartment was assumed to be the same for both ketone bodies. Two slowly equilibrating tissue compartments are required to account for the slow components in the tracer data, and thus a five-compartment model is proposed. By modeling the transient tracer data with the tracee in a steady state, ketone body kinetics were defined in terms of the rapid interconversions of A and B, and the slow exchanges of carbon within the tissues. The rates of release of new A and B into blood, (UA and UB) were calculated. These rates were less than the apparent production rates, PRA and PRB, as the PR's included carbon atoms first released as the other ketone body. The exchange constants between the compartments were determined in addition to the fractional catabolic rates (FCR) and metabolic clearance rates (MCR) of A and B. The initial space of distribution was 10 L and the mean values +/- SD (n = 11), normalized to this volume, were UA = 6.4 +/- 5.0, UB = 8.8 +/- 8.0 (mumol L-1 min-1), FCRA = 0.226 +/- 0.142, FCRB = 0.188 +/- 0.124 (min-1), MCRA = 2.26 +/- 1.42, MCRB = 1.87 +/- 1.23 (L min-1) and PRA = 11.1 +/- 7.6, PRB = 12.7 +/- 10.0 (mumol L-1 min-1).  相似文献   

9.
We have developed a non-steady-state mathematical model describing post-translational protein translocation across the endoplasmic reticulum membrane. Movement of the polypeptide chain through the channel in the endoplasmic reticulum membrane is considered to be a stochastic process which is biased at the lumenal side of the channel by the binding of BiP (Kar2p), a member of the Hsp70 family of ATPases (ratcheting model). Assuming that movement of the chain through the channel is caused by passive diffusion (Brownian ratchet), the model describes all available experimental data. The optimum set of model parameters indicates that the ratcheting mechanism functions at near-maximum rate, being relatively insensitive to variations of the association or dissociation rate constants of BiP or its concentration. The estimated rate constant for diffusion of a polypeptide inside the channel indicates that the chain makes contact with the walls of the channel. Since fitting of the model to the data required that the backward rate constant be larger than the forward constant during early diffusion steps, translocation must occur against a force. The latter may arise, for example, from the unfolding of the polypeptide chain in the cytosol. Our results indicate that the ratchet can transport polypeptides against a free energy of about 25 kJ/mol without significant retardation of translocation. The modeling also suggests that the BiP ratchet is optimized, allowing fast translocation to be coupled with minimum consumption of ATP and rapid dissociation of BiP in the lumen of the ER. Finally, we have estimated the maximum hydrophobicity of a polypeptide segment up to which lateral partitioning from the channel into the lipid phase does not result in significant retardation of translocation.  相似文献   

10.
A mathematical model was developed in order to investigate the possible role of the modified Ca permeability through the muscle membrane in the genesis of myotonic state. It was demonstrated that the existence of such possibilities and their corresponding characteristics in terms of various membrane parameters have been defined.  相似文献   

11.
12.

Background

Dopamine is a catecholamine that is used as a neurotransmitter both in the periphery and in the central nervous system. Dysfunction in various dopaminergic systems is known to be associated with various disorders, including schizophrenia, Parkinson's disease, and Tourette's syndrome. Furthermore, microdialysis studies have shown that addictive drugs increase extracellular dopamine and brain imaging has shown a correlation between euphoria and psycho-stimulant-induced increases in extracellular dopamine [1]. These consequences of dopamine dysfunction indicate the importance of maintaining dopamine functionality through homeostatic mechanisms that have been attributed to the delicate balance between synthesis, storage, release, metabolism, and reuptake.

Methods

We construct a mathematical model of dopamine synthesis, release, and reuptake and use it to study homeostasis in single dopaminergic neuron terminals. We investigate the substrate inhibition of tyrosine hydroxylase by tyrosine, the consequences of the rapid uptake of extracellular dopamine by the dopamine transporters, and the effects of the autoreceoptors on dopaminergic function. The main focus is to understand the regulation and control of synthesis and release and to explicate and interpret experimental findings.

Results

We show that the substrate inhibition of tyrosine hydroxylase by tyrosine stabilizes cytosolic and vesicular dopamine against changes in tyrosine availability due to meals. We find that the autoreceptors dampen the fluctuations in extracellular dopamine caused by changes in tyrosine hydroxylase expression and changes in the rate of firing. We show that short bursts of action potentials create significant dopamine signals against the background of tonic firing. We explain the observed time courses of extracellular dopamine responses to stimulation in wild type mice and mice that have genetically altered dopamine transporter densities and the observed half-lives of extracellular dopamine under various treatment protocols.

Conclusion

Dopaminergic systems must respond robustly to important biological signals such as bursts, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of tyrosine hydroxylase, the dopamine transporters, and the dopamine autoreceptors.  相似文献   

13.
Responses to an anonymous postal survey concerning scrapie are analysed. Risk factors associated with farms that have had scrapie are identified as size, geographical region, lambing practices and holding of certain breeds. Further analysis of farms that have scrapie only in bought-in animals reveals that such farms tend to breed a smaller proportion of their replacement animals than farms without scrapie. Farms that have had scrapie in home-bred animals have attributes associated with breeding many animals: large numbers of rams bought, few ewes bought, and many animals that are home-bred. The demography of British sheep farms as described by size, breeds, purchasing behaviour, age structure and proportion of animals that are home-bred is summarized. British farms with scrapie reveal certain special features: they have more sheep that are found dead, more elderly ewes and more cases of scab.  相似文献   

14.
Making a medical diagnosis consists of correlating knownpatterns of disease with the various classes of clinical data elicited from the history, physical examination, and batteries of tests relative to the diagnostic dynamics symbolized by atree branching into the various possible diagnostic decisions. In this paper a relational mathematical model of the reasoning aspects of the conventional medical diagnostic process is suggested as a way of extracting a general, formal concept of medical diagnosis. Computer implementation of the model is discussed briefly.  相似文献   

15.
White fat cells have an important physiological role in maintaining triglyceride and free fatty acid levels due to their fundamental storage property, as well as determining insulin resistance. ADipocyte METabolism is a mathematical model that mimics the main metabolic pathways of human white fat cell, connecting inputs (composition of culture medium) to outputs (glycerol and free fatty acid release). It is based on a set of nonlinear differential equations, implemented in Simulink® and controlled by cellular energetic state. The validation of this model is based on a comparison between the simulation results and a set of experimental data collected from the literature.  相似文献   

16.
H Schwegler  K Tarumi 《Bio Systems》1986,19(4):307-315
The concepts of self-generation, autonomous boundary and self-maintenance are explained briefly. The "protocell" is presented as a model of self-maintenance which is based on simple physical mechanisms of diffusion and reaction. The time evolution of the surface of the protocell is taken into account explicitly in the form of a Stefan condition giving rise to a non-linear feedback of the surface motion to the reaction and diffusion processes inside the protocell. The spatio-temporal dynamics are investigated, particularly in the neighbourhood of the stationary states, showing a self-maintaining behaviour under a certain range of nutritional conditions. Under another set of conditions we find an instability leading to a division process so that the population of protocells becomes self-maintaining instead of the single individual. The presented formulation of the protocell model is crucially improved compared with a previous version which required boundary conditions at infinity. The previous version was not strictly self-maintaining since dynamics outside the cell were essential for its behaviour.  相似文献   

17.
18.
Steady-state microdialysis is a widely used technique to monitor the concentration changes and distributions of substances in tissues. To obtain more information about brain tissue properties from microdialysis, a dual-probe approach was applied to infuse and sample the radiotracer, [3H]mannitol, simultaneously both in agar gel and in the rat striatum. Because the molecules released by one probe and collected by the other must diffuse through the interstitial space, the concentration profile exhibits dynamic behavior that permits the assessment of the diffusion characteristics in the brain extracellular space and the clearance characteristics. In this paper a mathematical model for dual-probe microdialysis was developed to study brain interstitial diffusion and clearance processes. Theoretical expressions for the spatial distribution of the infused tracer in the brain extracellular space and the temporal concentration at the probe outlet were derived. A fitting program was developed using the simplex algorithm, which finds local minima of the standard deviations between experiments and theory by adjusting the relevant parameters. The theoretical curves accurately fitted the experimental data and generated realistic diffusion parameters, implying that the mathematical model is capable of predicting the interstitial diffusion behavior of [3H]mannitol and that it will be a valuable quantitative tool in dual-probe microdialysis.  相似文献   

19.

Background  

Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system.  相似文献   

20.
A three-dimensional mathematical model of the rheological properties of a morphofunctional unit of the myocardium has been constructed, which consists of transversal and longitudinal elastic elements and tilted viscoelastic elements hinged without friction. The parameters of the viscosity and elasticity of structural elements of the model do not depend on the deformation value. The model makes it possible to adequately describe the features of the viscoelastic behavior of isolated samples of the passive myocardium and of the myocardium under longitudinal strain. A good agreement between the calculated and experimental data for an intact preparation of the rat myocardium and a preparation with removed cardiomyocytes has been shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号