首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase substrate phage (PKS phage) was constructed by fusing the substrate recognition consensus sequence of cAMP-dependent protein kinase (cAPK) with bacteriophage minor coat protein g3p and by dis-playing it on the surface of filamentous bacteriophage fd. Phosphorylation in vitro by cAPK showed a unique labelled band of approximately 60 ku, which was consistent with the molecular weight of the PKS-g3p fusion protein. Some weakly phosphorylated bands for both PKS phage and wild-type phage were also observed. Phage display random 15-mer peptide library phosphorylated by cAPK was selected with ferric (Fe3 ) chelalion affinity resin. After 4 rounds of screening, phage clones were picked out to determine the displayed peptide sequences by DNA sequencing. The results showed that 5 of 14 sequenced phages displayed the cAPK recognition sequence motif (R)RXS/T. Their in vitro phosphorylation analyses revealed the specific labelled bands corresponding to the positive PKS phages with and without the typ  相似文献   

2.
Understanding substrate specificity and identification of natural targets of transglutaminase 2 (TG2), the ubiquitous multifunctional cross-linking enzyme, which forms isopeptide bonds between protein-linked glutamine and lysine residues, is crucial in the elucidation of its physiological role. As a novel means of specificity analysis, we adapted the phage display technique to select glutamine-donor substrates from a random heptapeptide library via binding to recombinant TG2 and elution with a synthetic amine-donor substrate. Twenty-six Gln-containing sequences from the second and third biopanning rounds were susceptible for TG2-mediated incorporation of 5-(biotinamido)penthylamine, and the peptides GQQQTPY, GLQQASV, and WQTPMNS were modified most efficiently. A consensus around glutamines was established as pQX(P,T,S)l, which is consistent with identified substrates listed in the TRANSDAB database. Database searches showed that several proteins contain peptides similar to the phage-selected sequences, and the N-terminal glutamine-rich domain of SWI1/SNF1-related chromatin remodeling proteins was chosen for detailed analysis. MALDI/TOF and tandem mass spectrometry-based studies of a representative part of the domain, SGYGQQGQTPYYNQQSPHPQQQQPPYS (SnQ1), revealed that Q(6), Q(8), and Q(22) are modified by TG2. Kinetic parameters of SnQ1 transamidation (K(M)(app) = 250 microM, k(cat) = 18.3 sec(-1), and k(cat)/K(M)(app) = 73,200) classify it as an efficient TG2 substrate. Circular dichroism spectra indicated that SnQ1 has a random coil conformation, supporting its accessibility in the full-length parental protein. Added together, here we report a novel use of the phage display technology with great potential in transglutaminase research.  相似文献   

3.
Protein tyrosine phosphatases (PTPs) play important, highly dynamic roles in signaling. Currently about 90 different PTP genes have been described. The enzymes are highly regulated at all levels of expression, and it is becoming increasingly clear that substrate specificity of the PTP catalytic domains proper contributes considerably to PTP functionality. To investigate PTP substrate selectivity, we have set up a procedure to generate phage libraries that presents randomized, phosphotyrosine-containing peptides. Phages that expressed suitable substrates were selected by immobilized, substrate-trapping GST-PTP fusion proteins. After multiple rounds of selection, positive clones were confirmed by SPOT analysis, dephosphorylation by wild-type enzyme, and Km determinations. We have identified distinct consensus substrate motifs for PTP1B, Sap-1, PTP-beta, SHP1, and SHP2. Our results confirm substrate specificity for individual PTPs at the peptide level. Such consensus sequences may be useful both for identifying potential PTP substrates and for the development of peptidomimetic inhibitors.  相似文献   

4.
5.
Membrane type-1 matrix metalloproteinase (MT1-MMP) has been reported to mediate the activation of progelatinase A (proMMP-2) which is associated with tumor invasion and metastasis, and also known to have an ability to digest extracellular matrix components. To clarify substrate specificity of MT1-MMP, we have searched for amino acid sequences cleaved by this protease using the hexamer substrate phage library consisting of a large number of randomized amino acids sequences. The consensus substrate sequences for MT1-MMP were deduced from the selected clones and appeared to be P-X-G/P-L at the P3-P1' sites. Peptide cleavage assay revealed that MT1-MMP preferentially digested a synthetic substrate containing Pro of the P1 position compared to that being substituted with Gly. Our results may have an important implication to identifying new target proteins for MT1-MMP and leading to the design of its selective inhibitors suitable for cancer chemotherapy.  相似文献   

6.
The F (fusion) protein of the respiratory syncytial viruses is synthesized as an inactive precursor F(0) that is proteolytically processed at the multibasic sequence KKRKRR(136) into the subunits F(1) and F(2) by the cellular protease furin. This maturation process is essential for the F protein to gain fusion competence. We observed that proteolytic cleavage additionally occurs at another basic motif, RARR(109), that also meets the requirements for furin recognition. Cleavage at both sites leads to the removal from the polypeptide chain of a glycosylated peptide of 27 amino acids. When the sequence RARR(109) was changed to NANR(109) or to RANN(109) by site-directed mutagenesis, cleavage by furin was completely prevented. Although the mutants were still processed at position Arg(136), they did not show any syncytia formation. Proteolytic cleavage of the modified motifs was achieved by treatment of transfected cells with trypsin converting the F mutants into their fusogenic forms. Our findings indicate that both furin consensus sequences have to be cleaved in order to activate the fusion protein.  相似文献   

7.
Fibroblast activation protein (FAP) is a transmembrane serine peptidase that belongs to the prolyl peptidase family. FAP has been implicated in cancer; however, its specific role remains elusive because inhibitors that distinguish FAP from other prolyl peptidases like dipeptidyl peptidase-4 (DPP-4) have not been developed. To identify peptide motifs for FAP-selective inhibitor design, we used P(2)-Pro(1) and acetyl (Ac)-P(2)-Pro(1) dipeptide substrate libraries, where P(2) was varied and substrate hydrolysis occurs between Pro(1) and a fluorescent leaving group. With the P(2)-Pro(1) library, FAP preferred Ile, Pro, or Arg at the P(2) residue; however, DPP-4 showed broad reactivity against this library, precluding selectivity. By contrast, with the Ac-P(2)-Pro(1) library, FAP cleaved only Ac-Gly-Pro, whereas DPP-4 showed little reactivity with all substrates. FAP also cleaved formyl-, benzyloxycarbonyl-, biotinyl-, and peptidyl-Gly-Pro substrates, which DPP-4 cleaved poorly, suggesting an N-acyl-Gly-Pro motif for inhibitor design. Therefore, we synthesized and tested the compound Ac-Gly-prolineboronic acid, which inhibited FAP with a K(i) of 23 +/- 3 nm. This was approximately 9- to approximately 5400-fold lower than the K(i) values for other prolyl peptidases, including DPP-4, DPP-7, DPP-8, DPP-9, prolyl oligopeptidase, and acylpeptide hydrolase. These results identify Ac-Gly-BoroPro as a FAP-selective inhibitor and suggest that N-acyl-Gly-Pro-based inhibitors will allow testing of FAP as a therapeutic target.  相似文献   

8.
We constructed a random library of hexapeptides displayed on the surface of bacteriophage T7 to determine the substrate specificity of proteinases. The phage-displayed library was subjected to repeated rounds of biopanning with native implantation serine proteinase and recombinant human kallikrein-related peptidase 6 (KLK6) followed by selection and identification of putative substrates. For both enzymes, the results obtained demonstrate a preference for arginine and lysine at multiple positions in the recognition cleavage motif, confirming their previously reported trypsin-like substrate specificity. In the case of KLK6, there is also a pronounced presence of tryptophan within the cleaved peptide sequences, indicating its potential dual substrate specificity, acting as both a trypsin and chymotrypsin-like enzyme.  相似文献   

9.
10.
The fusion (F) protein precursor of virulent Newcastle disease virus (NDV) strains has two pairs of basic amino acids at the cleavage site, and its intracellular cleavage activation occurs in a variety of cells; therefore, the viruses cause systemic infections in poultry. To explore the protease responsible for the cleavage in the natural host, we examined detailed substrate specificity of the enzyme in chick embryo fibroblasts (CEF) using a panel of the F protein mutants at the cleavage site expressed by vaccinia virus vectors, and compared the specificity with those of mammalian subtilisin-like proteases such as furin, PC6 and PACE4 which are candidates for F protein processing enzymes. It was demonstrated in CEF cells that Arg residues at the -4, -2 and -1 positions upstream of the cleavage site were essential, and that at the -5 position was required for maximal cleavage. Phe at the +1 position was also important for efficient cleavage. On the other hand, furin and PC6 expressed by vaccinia virus vectors showed cleavage specificities against the F protein mutants consistent with that shown by the processing enzyme of CEF cells, but PACE4 hardly cleaved the F proteins including the wild type. These results indicate that the proteolytic processing enzymes of poultry for virulent NDV F proteins could be furin and/or PC6 but not PACE4. The significance of individual contribution of the three amino acids at the -5, -2 and +1 positions to cleavability was discussed in relation to the evolution of virulent and avirulent NDV strains.  相似文献   

11.
Cassette mutagenesis was used to synthesize an Escherichia coli expression library of unique phosphorylation sites. The cassette encodes a central serine residue surrounded by every combination of Ala, Arg, Gln, Glu, Gly, and Pro residues over a 7-residue segment (a total of 6(7) approximately 2.8 x 10(5) sequences). The cassette was inserted into the gene of a suitable carrier protein and expressed in E. coli with the T7 expression system, and the resultant library was subjected to solid-phase protein phosphorylation assays on nitrocellulose filters. When the library was screened with TPK1 delta, the modified catalytic subunit of the Saccharomyces cerevisiae cAMP-dependent protein kinase, individual colonies that expressed substrates for this kinase were identified. By DNA sequencing through the cassette region of positive clones, the consensus recognition sequence for TPK1 delta was deduced and found to conform with the well-established substrate selectivity of its mammalian homolog (Arg-Arg-Xaa-Ser). Because a large number of clones can be sequenced rapidly, and the positions of invariant residues composing a recognition site identified, this approach may be useful as a general screen of protein kinase substrate selectivity.  相似文献   

12.
The catalytic domains of the matrix metalloproteinases (MMPs) are structurally homologous, raising questions as to the degree of distinction, or overlap, in substrate recognition. The primary objective of the present study was to define the substrate recognition profile of MMP-2, a protease that was historically referred to as gelatinase A. By cleaving a phage peptide library with recombinant MMP-2, four distinct sets of substrates were identified. The first set is structurally related to substrates previously reported for other MMPs. These substrates contain the PXX/X(Hy) consensus motif (where X(Hy) is a hydrophobic residue) and are not generally selective for MMP-2 over the other MMPs tested. Two other groups of substrates were selected from the phage library with similar frequency. Substrates in group II contain the L/IXX/X(Hy) consensus motif. Substrates in group III contain a consensus motif with a sequence of X(Hy)SX/L, and the fourth set of substrates contain the HXX/X(Hy) sequence. Substrates in Group II, III, and IV were found to be 8- to almost 200-fold more selective for MMP-2 over MMP-9. To gain an understanding of the structural basis for substrate selectivity, individual residues within substrates were mutated, revealing that the P(2) residue is a key element in conferring selectivity. These findings indicate that MMP-2 and MMP-9 exhibit different substrate recognition profiles and point to the P(2) subsite as a primary determinant in substrate distinction.  相似文献   

13.
Panning of a substrate phage library with an α-lytic protease mutant showed that substrate phage display can be used to isolate sequences with improved protease sensitivity even for proteases of relatively broad specificity. Two panning experiments were performed with an engineered α-lytic protease mutant known to have a preference for cleavage after His or Met residues. Both experiments led to the isolation of protease-sensitive phage containing linker sequences in which His and Met residues were enriched compared with the initial library. Despite the relatively hydrophobic substrate binding site of the enzyme, the predominant protease-sensitive sequence isolated from the second library panning had the sequence Asp-Ser-Thr-Met. Kinetic studies showed that this sequence was cleaved up to 4.5-fold faster than rationally designed positive controls. Protease-resistant phage particles were also selected and characterized, with the finding that Gly and Pro appeared frequently at the putative P4 positions, whereas Asp dominated the putative P1 position.  相似文献   

14.
Human glandular kallikrein 2 (hK2) is a trypsin-like serine protease expressed predominantly in the prostate epithelium. Recently, hK2 has proven to be a useful marker that can be used in combination with prostate specific antigen for screening and diagnosis of prostate cancer. The cleavage by hK2 of certain substrates in the proteolytic cascade suggest that the kallikrein may be involved in prostate cancer development; however, there has been very little other progress toward its biochemical characterization or elucidation of its true physiological role. In the present work, we adapt phage substrate technology to study the substrate specificity of hK2. A phage-displayed random pentapeptide library with exhaustive diversity was generated and then screened with purified hK2. Phages displaying peptides susceptible to hK2 cleavage were amplified in eight rounds of selection and genes encoding substrates were transferred from the phage to a fluorescent system using cyan fluorescent protein (derived from green fluorescent protein) that enables rapid determination of specificity constants. This study shows that hK2 has a strict preference for Arg in the P1 position, which is further enhanced by a Ser in P'1 position. The scissile bonds identified by phage display substrate selection correspond to those of the natural biological substrates of hK2, which include protein C inhibitor, semenogelins, and fibronectin. Moreover, three new putative hK2 protein substrates, shown elsewhere to be involved in the biology of the cancer, have been identified thus reinforcing the importance of hK2 in prostate cancer development.  相似文献   

15.
Ca2+-dependent protein kinase (CDPK-1) was purified from maize seedlings, and its substrate specificity studied using a set of synthetic peptides derived from the phosphorylatable sequence RVLSRLHS15VRER of maize sucrose synthase 2. The decapeptide LARLHSVRER was found to be efficiently phosphorylated as a minimal substrate. The same set of peptides were found to be phosphorylated by mammalian protein kinase Cbeta (PKC), but showed low reactivity with protein kinase A (PKA). Proceeding from the sequence LARLHSVRER, a series of cellulose-membrane-attached peptides of systematically modified structure was synthesised. These peptides had hydrophobic (Ala, Leu) and ionic (Arg, Glu) amino acids substituted in each position. The phosphorylation of these substrates by CDPK-1 was measured and the substrate specificity of the maize protein kinase characterised by the consensus sequence motif A/L-5X-4R-3X-2X-1SX+1R+2Z+3R+4, where X denotes a position with no strict amino acid requirements and Z a position strictly not tolerating arginine compared with the other three varied amino acids. This motif had a characteristic sequence element RZR at positions +2 to +4 and closely resembled the primary structure of the sucrose synthase phosphorylation site. The sequence surrounding the phosphorylatable serine in this consensus motif was similar to the analogous sequence K/RXXS/TXK/R proposed for mammalian PKC, but different from the consensus motif RRXS/TX for PKA.  相似文献   

16.
Panning of a substrate phage library with an -lytic protease mutant showed that substrate phage display can be used to isolate sequences with improved protease sensitivity even for proteases of relatively broad specificity. Two panning experiments were performed with an engineered -lytic protease mutant known to have a preference for cleavage after His or Met residues. Both experiments led to the isolation of protease-sensitive phage containing linker sequences in which His and Met residues were enriched compared with the initial library. Despite the relatively hydrophobic substrate binding site of the enzyme, the predominant protease-sensitive sequence isolated from the second library panning had the sequence Asp-Ser-Thr-Met. Kinetic studies showed that this sequence was cleaved up to 4.5-fold faster than rationally designed positive controls. Protease-resistant phage particles were also selected and characterized, with the finding that Gly and Pro appeared frequently at the putative P4 positions, whereas Asp dominated the putative P1 position.  相似文献   

17.
In our study, we characterized the substrate recognition properties of membrane type-1 matrix metalloproteinase (MT1-MMP; also known as MMP-14), a key enzyme in tumor cell invasion and metastasis. A panel of optimal peptide substrates for MT1-MMP was identified using substrate phage display. The substrates can be segregated into four groups based on their degree of selectivity for MT1-MMP. Substrates with poor selectivity for MT1-MMP are comprised predominately of the Pro-X-X- downward arrow-X(Hy) motif that is recognized by a number of MMPs. Highly selective substrates lack the characteristic Pro at the P(3) position; instead they contain an Arg at the P(4) position. This P(4) Arg is essential for efficient hydrolysis and for selectivity for MT1-MMP. Molecular modeling indicates that the selective substrates adopt a linear conformation that extends along the entire catalytic pocket of MT1-MMP, whereas non-selective substrates are kinked at the conserved P(3) Pro residue. Importantly, the selective substrates can be made non-selective by insertion of a proline kink at P(3), without significantly reducing overall k(cat)/K(m) values. Altogether the study provides a structural basis for selective and non-selective substrate recognition by MT1-MMP. The findings in this report are likely to explain several aspects of MT1-MMP biology.  相似文献   

18.
The use of phosphorylation state-specific antibodies has revolutionized the field of cellular signaling by Ser/Thr protein kinases. A more recent application of this technology is the development of phospho-specific antibodies that specifically recognize the consensus substrate phosphorylated motif of a given protein kinase. Here, we describe the development and use of such an antibody which is directed against the optimal phosphorylation motif of protein kinase D (PKD). A degenerate phosphopeptide library with fixed residues corresponding to the consensus LXR(Q/K/E/M)(M/L/K/E/Q/A)S*XXXX was used as an antigen to generate an antibody that recognizes this motif. We characterized the antibody by enzyme-linked immunosorbent assay and with immobilized peptide arrays and also detected immunoreactive phosphoproteins in HeLa cells stimulated with agonists known to activate PKD. Silencing PKD expression using RNA interference validated the specificity of this antibody immunoreactive against putative substrates. The antibody also detected the PKD substrates RIN1 and HDAC5. Knowledge of the PKD consensus motif also enabled us to identify Ser(82) in the human heat shock protein Hsp27 as a novel substrate for PKD. We term this antibody anti-PKD pMOTIF and predict that it will enable the discovery of novel PKD substrate proteins in cells.  相似文献   

19.
The specificity determinants for insulin-stimulated protein kinase-I (ISPK-1) have been investigated with synthetic peptides based on naturally-occurring protein phosphoacceptor sequences. Peptides (Arg-Arg-Xaa-Ser-Xaa) that fulfill the consensus sequence for cyclic-AMP-dependent protein kinase (PK-A) are also phosphorylated readily by ISPK-1. The phosphorylation efficiency is improved by increasing the number of N-terminal arginine residues and by moving the arginyl cluster one residue further away from the serine, the nonapeptide (Arg)4-Ala-Ala-Ser-Val-Ala being the best substrate among all the short peptides tested (Km = 15 μM). Conversely, the substitution of either Thr for Ser or Lys for Arg is detrimental. Likewise, two flanking Pro residues and an Arg immediately N-terminal to the Ser act as negative specificity determinants. While the specificity of ISPK-1 shows several similarities to that of PK-A, including an absolute requirement for basic residues on the N-terminal side of the target Ser, it differs in several other respects including (1), the detrimental effect of a Lys for Arg substitution which is still compatible with some phosphorylation by ISPK-1, but not PK-A; (2), the presence of C-terminal acidic residues which are tolerated very well by ISPK-1, but are detrimental to PK-A; (3), the effect of substituting Phe for Val in the peptide Arg-Arg-Ala-Ser-Val-Ala, which improves the efficiency of phosphorylation by PK-A (lowering the Km 4-fold), but has no effect on phosphorylation by ISPK-1. These differences in peptide substrate specificity may account in part for the different rates of phosphorylation of physiological substrates for ISPK-1 and PK-A, such as the G subunit of protein phosphatase-1.  相似文献   

20.
Previous work demonstrated that human furin is a predominantly Golgi membrane-localized endoprotease that can efficiently process precursor proteins at paired basic residues (-Lys-Arg- or -Arg-Arg-) in transfected cells. Anion-exchange chromatography of culture supernatant from cells expressing a soluble truncated form of human furin resulted in a greatly enriched preparation of the endoprotease (approximately 70% pure as determined by protein staining). Enzymatic studies show that furin is a calcium-dependent (K0.5 = 200 microM) serine endoprotease which has greater than 50% of maximal activity between pH 6.0 and 8.5. The inhibitor sensitivity of furin suggests that it is similar to, yet distinct from, other calcium-dependent proteases. Evidence that furin may require a P4 Arg in fluorogenic peptide substrates suggested that this enzyme might cleave the protective antigen (PA) component of anthrax toxin at the sequence -Arg-Lys-Lys-Arg-. Indeed, PA was cleaved by purified furin at the proposed consensus site (-Arg-X-Lys/Arg-Arg decreases-) at a rate (8 mumol/min/mg total protein) 400-fold higher than that observed with synthetic peptides. In addition, the processing of mutant PA molecules with altered cleavage sites suggests that furin-catalyzed endoproteolysis minimally requires an -Arg-X-X-Arg- recognition sequence for efficient cleavage. Together, these results support the hypothesis that furin processes protein precursors containing this cleavage site motif in the exocytic pathway and in addition, raises the possibility that the enzyme also cleaves extracellular substrates, including PA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号