首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Heightened interest in the evolutionary problems of developmental biology in the 1980s was due to the success of molecular genetics and disappointment in the synthetic theory of evolution, where the chapters of embryology and developmental biology seem to have been left out. Modern evo-devo, which turned out to be antipodean to the methodology of the synthetic theory of evolution, propagandized in the development of evolutionary problems only the mechanical and molecular genetic approach to the evolution of ontogenesis, based on cellular and intercellular interactions. The phonotypical approach to the evaluation of evolutionary occurrences in ontogenesis, which aids in the joining of the genetic and epigenetic levels of research, the theory of natural selection, the nomogenetic conception, and the problem of the wholeness of the organism in onto- and phylogenesis may be against this. The phenotypic approach to ontogenesis is methodologically the most perspective for evolutionary developmental biology.  相似文献   

2.
In the first half of the 20th century neo-Kantianism in a broad sense proved itself the main conceptual and methodological background of the central European biology. As such it contributed much to the victory on the typological, idealistic-morphological and psycho-vitalistic interpretations of life. On the other hand it could not give tools to the biologists for working out a strictly darwinian evolution theory. Kant's theory of organism was conceived without evolution as a theory of the internal functionality of the organism. There was only some 'play' with the evolutionary differentiation of the species. Since then the disputes around the work of August Weismann, a synthetical evolution theory which is now behind time, arose. This theory developed from coinciding claims, elaborated by geneticists, mathematicians, and by biologists studying development, natural history and systematics. This was done under a strong influence of marxist ideas. Through the interweaving of such different approaches it was possible for this evolutionary synthesis to influence successfully the development of evolution research during more than 40 years. Philosophically speaking modern evolution theory means therefore an aversion, even a positive abolition of Kantian positions. A number of biologists however--as L. von Bertalanffy--refused to adhere to a misinterpreted Kantian methodology and oriented themselves to an approach via system theory, which obtained a place in evolution research. In fact this is a Kantian approach as well. They only repeated the Kantian dilemma of the evolution which can also be found in Lamarck and Hegel. The system theory of the functionality of the organism never reaches to the level of the evolving species, but remains always on the level of epigenetic thinking, because of its philosophical origin. This paper points out the consequences of this still current dilemma. At the same time an all-enclosing reflection on the methodological, epistemological and the important historical questions of evolutionary biology in its scientific context is recommended.  相似文献   

3.
The modern synthesis has been considered to be wrongly called a "synthesis", since it had completely excluded embryology, and many other disciplines. The recent developments of Evo-Devo have been seen as a step in the right direction, as complementing the modern synthesis, and probably leading to a "new synthesis". My argument is that the absence of embryology from the modern synthesis was the visible sign of a more profound lack: the absence of functional biology in the evolutionary synthesis. I will consider the reasons for this absence, as well as the recent transformations which favoured a closer interaction between these two branches of biology. Then I will describe two examples of recent work in which functional and evolutionary questioning were tightly linked. The most significant part of the paper will be devoted to the transformation of evolutionary theory that can be expected from this encounter: a deep transformation, or simply an experimental confirmation of this theory? I will not choose between these two different possibilities, but will discuss some of the difficulties which make the choice problematic.  相似文献   

4.
The question of whether the modern evolutionary synthesis requires an extension has recently become a topic of discussion, and a source of controversy. We suggest that this debate is, for the most part, not about the modern synthesis at all. Rather, it is about the extent to which genetic mechanisms can be regarded as the primary determinants of phenotypic characters. The modern synthesis has been associated with the idea that phenotypes are the result of gene products, while supporters of the extended synthesis have suggested that environmental factors, along with processes such as epigenetic inheritance, and niche construction play an important role in character formation. We argue that the methodology of the modern evolutionary synthesis has been enormously successful, but does not provide an accurate characterization of the origin of phenotypes. For its part, the extended synthesis has yet to be transformed into a testable theory, and accordingly, has yielded few results. We conclude by suggesting that the origin of phenotypes can only be understood by integrating findings from all levels of the organismal hierarchy. In most cases, parts and processes from a single level fail to accurately explain the presence of a given phenotypic trait.  相似文献   

5.
Evolution of diet-derived sexual ornaments—some of the most spectacular and diverse traits in the living world—highlights the gap between modern evolutionary theory and empirical data on the origin and inheritance of complex environment-dependent traits. Specifically, current theory offers little insight into how strong environmental contingency of diet-dependent color biosynthesis and environmental variability in precursor supply can be reconciled with extensive evolutionary elaboration, diversification, and convergence of diet-dependent displays among animal taxa. Moreover, biosynthetic pathways of diet-derived displays combine seemingly irreconcilable robustness, lability, and modularity to facilitate elaboration under variable environmental conditions. Here I show that an ontogenetic decrease in the predictability of an association between organismal and environmental components of color biosynthesis and the corresponding evolutionary transition from short-term epigenetic inheritance of peripheral biosynthetic components to genetic inheritance of the most reliable upstream components link the causes of developmental variation with the causes of inheritance in diet-derived displays. Using carotenoid-based colors as an empirical model, I outline general principles of a testable evolutionary framework of diversification and functional robustness of diet-derived displays, and suggest that such a framework provides insight into the foundational question of evolutionary biology—how to connect causes of within-generation developmental variation with causes of among-generation and among-taxa variation and thus with causes of evolution?  相似文献   

6.
SUMMARY The success of the modern synthesis has resulted in forces of evolutionary change other than natural selection being marginalized. However, recent work has attempted to show the importance of non-selective influences in shaping organic form. One such force is developmental bias, in which phenotypes are differentially produced. We use a simulation model of neural development to explore questions of general interest about developmental systems. From this analysis, we find that the pattern of developmental bias varies strongly with the genotype even among phenotypically-neutral genotypes. In addition to this genotype-dependent developmental bias ( local bias ), an intrinsic bias exists in the developmental system ( global bias ). We also show that developmental bias varies among related genotypes that produce the same phenotype. Finally, we illustrate how a pattern of bias emerges from the manner in which mutations affect the regulatory structure of the wild-type genotype. These results suggest that developmental bias could have a strong influence on the direction of evolutionary modification.  相似文献   

7.
One's ultimate phenotype is the result of a combination of genotype and environment, and includes a poorly understood component termed "developmental noise". This "developmental noise", also known as "intangible variation", is rarely discussed even though it appears to make a significant contribution to the variance of quantitative traits within a species. The molecular basis of developmental noise remains unknown, but it appears to be established in embryonic development and to be retained for the life of the organism. We propose that the molecular basis of developmental noise is, at least in some instances, the epigenetic state of the genome. The stochastic nature of the establishment of epigenetic state, combined with its heritability during mitosis, provides all of the essential components for developmental noise.  相似文献   

8.
The extreme malleability or plasticity of cells early in their development is mirrored to a certain, if lesser, degree in the psychological, behavioral, and neural functioning of developing organisms. The early developmental adaptability of organisms has significance for our understanding of evolution. It is the purpose of the present article to make a case for the extra-genetic or, better, the supra-genetic developmental basis of evolutionary change through the genesis of novel behavioral phenotypes. To make things as clear as possible, I contrast this developmental approach to evolution with the population-genetic model of the modern synthesis. I should say at the outset that the present theory can be integrated with the population-genetic model, with the exception of the radically different role ascribed to genes in the two viewpoints.  相似文献   

9.
10.
Evolutionary developmental biology and niche-construction theory have much in common, despite independent intellectual origins. Both place emphasis on the role of ontogenetic processes in evolution. The same historical events shaped them, and similar philosophical and sociological barriers hindered their respective advances. Both perspectives maintain that neo-Darwinism needs a theory of macroevolutionary variation and that such a theory can now be adduced from developmental biology. Some proponents of both EvoDevo and niche construction propose additional evolutionary mechanisms, and specify a key role for stable extra-genetic forms of inheritance. Similarly, proponents of each lay emphasis on "reciprocal causation" in the relationship between organism and environment. We illustrate here how EvoDevo and niche construction could gain "added value" from each other, and demonstrate how the niche-construction perspective potentially provides a useful conduit to integrate evolutionary and developmental biology.  相似文献   

11.
The possible evolutionary significance of epigenetic memory and codes is a key problem for extended evolutionary synthesis and biosemiotics. In this paper, some less known original works are reviewed which highlight theoretical parallels between current evolutionary epigenetics, on the one hand, and its predecessors in the eco-physiology of higher nervous activity, on the other. Recently, these areas have begun to converge, with first evidence now indicating the possibility of transgenerational epigenetic inheritance of conditional associations in the mammalian nervous system, and related findings in other taxa. This can serve as an interesting example of evolutionary code-making, where the molecular mechanisms underlying arbitrary associations between stimuli involve lasting changes in gene expression that may be transmitted epigenetically across generations, and which in some cases could be further assimilated into the genome over subsequent evolution. Although preliminary, such epigenetic scenarios would also offer an interesting, if so far overlooked parallel to earlier research carried out by one of I.P. Pavlov’s leading students, acad. P.K. Anokhin, and his colleagues, but also by eminent eco-physiologists of the time, several of whom offered arguments for the possibility of unconditional reflexes representing evolutionarily later, specialized, and reduced forms of associative reflexes, from which they may be derived. Although discarded under the growing dominance of modern synthesis, these early epigenetic investigations may deserve renewed attention in the modern context, and if further confirmed, could open essentially new perspectives on the morphofunctional evolution of the nervous system.  相似文献   

12.
It has been repeatedly claimed that morphological novelties are an unresolved problem in evolutionary theory. Several definitions of novelty exist but most emphasize that novelties imply qualitative changes on the phenotype and not the quantitative gradual changes favored in the neo-Darwinian approach to evolutionary theory. This article discusses how the concept of novelty is used to describe aspects of morphological evolution that are not satisfactorily explained under the modern synthesis. In this article, it is suggested that there is a repertoire of morphological changes rather than two discrete qualitatively different types of morphological change. How these different types of morphological changes can be understood from the diversity of developmental mechanisms existing in animal development is explored. Specifically, it is proposed that animal morphology and its variation can be understood from the spatial patterns produced by a set of basic developmental mechanisms and their combination. Some specific examples of these kinds of morphologic changes are explained.  相似文献   

13.
Biological complexity is a key component of evolvability, yet its study has been hampered by a focus on evolutionary trends of complexification and inconsistent definitions. Here, we demonstrate the utility of bringing complexity into the framework of epigenetics to better investigate its utility as a concept in evolutionary biology. We first analyze the existing metrics of complexity and explore the link between complexity and adaptation. Although recently developed metrics allow for a unified framework, they omit developmental mechanisms. We argue that a better approach to the empirical study of complexity and its evolution includes developmental mechanisms. We then consider epigenetic mechanisms and their role in shaping developmental and evolutionary trajectories, as well as the development and organization of complexity. We argue that epigenetics itself could have emerged from complexity because of a need to self‐regulate. Finally, we explore hybridization complexes and hybrid organisms as potential models for studying the association between epigenetics and complexity. Our goal is not to explain trends in biological complexity but to help develop and elucidate novel questions in the investigation of biological complexity and its evolution.  相似文献   

14.
15.
Based on recent advances in experimental embryology and molecular genetics, the morphogenetic program for the vertebrate cranium is summarized and several unanswered classical problems are reviewed. In particular, the presence of mesodermal segmentation in the head, the homology of the trabecular cartilage, and the origin of the dermal skull roof are discussed. The discovery of the neural-crest-derived ectomesenchyme and the roles of the homeobox genes have allowed the classical concept of head segmentation unchanged since Goethe to be re-interpreted in terms of developmental mechanisms at the molecular and cellular levels. In the context of evolutionary developmental biology, the importance of generative constraints is stressed as the developmental factor that generates the homologous morphological patterns apparent in various groups of vertebrates. Furthermore, a modern version of the germ-layer theory is defined in terms of the conserved differentiation of cell lineages, which is again questioned from the vantage of evolutionary developmental biology.  相似文献   

16.
New concepts and information from molecular developmental biology, systematics, geology and the fossil record of all groups of organisms, need to be integrated into an expanded evolutionary synthesis. These fields of study show that large-scale evolutionary phenomena cannot be understood solely on the basis of extrapolation from processes observed at the level of modern populations and species. Patterns and rates of evolution are much more varied than had been conceived by Darwin or the evolutionary synthesis, and physical factors of the earth's history have had a significant, but extremely varied, impact on the evolution of life.  相似文献   

17.
Neophenogenesis: a developmental theory of phenotypic evolution   总被引:2,自引:0,他引:2  
An important task for evolutionary biology is to explain how phenotypes change over evolutionary time. Neo-Darwinian theory explains phenotypic change as the outcome of genetic change brought about by natural selection. In the neo-Darwinian account, genetic change is primary; phenotypic change is a secondary outcome that is often given no explicit consideration at all. In this article, we introduce the concept of neophenogenesis: a persistent, transgenerational change in phenotypes over evolutionary time. A theory of neophenogenesis must encompass all sources of such phenotypic change, not just genetic ones. Both genetic and extra-genetic contributions to neophenogenesis have their effect through the mechanisms of development, and developmental considerations, particularly a rejection of the commonly held distinction between inherited and acquired traits, occupy a central place in neophenogenetic theory. New phenotypes arise because of a change in the patterns of organism-environment interaction that produce development in members of a population. So long as these new patterns of developmental interaction persist, the new phenotype(s) will also persist. Although the developmental mechanisms that produce the novel phenotype may change, as in the process known as "genetic assimilation", such changes are not necessary in order for neophenogenesis to occur, because neophenogenetic theory is a theory of phenotypic, not genetic, change.  相似文献   

18.
This investigation of modern human mandibular premolar root variation tests the hypothesis that population-specific mandibular single-rooted premolar root size can predict a predisposition to root morphological complexity. Mandibular postcanines were examined and quantified from dental radiographs in a globally spread sample of 1,615 modern humans. Multirooted premolars and a fused molar root phenotype were investigated as probes into greater than, and less than, the normative root number. Twelve questions were addressed concerning root structure of mandibular premolars and second molars. A direct correlation was found between single-rooted mandibular premolar size and the predisposition to multirootedness. This correlation infers the following: 1) that postcanine primordia size during root formation predisposes to the development of more, or less, than the normative postcanine root number; and 2) that the epigenetic effect of tooth primordium size per se influences the induction of interradicular processes, which divides the root during its development. This simple developmental model helps explain the following observations: 1) population-specific variation in postcanine root number; 2) sexual dimorphism for multirooted mandibular premolar prevalence; 3) why microdont teeth are single-rooted; 4) the hierarchy of developmental canalization of interradicular processes; 5) megadont-hominin to late-hominin mandibular premolar root number transition; and 6) the fluctuation of mandibular premolar root number in primate evolutionary history.  相似文献   

19.
20.
Darwin proposed natural selection as the main evolutionary mechanism in 1859. However, he did not think that this was the only process by which new species were generated. It was the so-called Modern Synthesis who established natural selection as the only mechanism responsible for evolution. Since then, the evolutionary process is explained by the pair mutation-adaptation: new species are generated by the appearance of new mutations, which in case of allowing new adaptations to the environment, they will be fixed and organisms will survive, therefore resulting in new species. An alternative view to the plasticity promoted by the adaptationist program is to think organisms as truly organized structures, having different levels of structural organization, which would mean that not every form is possible, but only those that correspond to a certain building plan. This would be reflected in the appearance of structural constraints, showing the limits imposed to the organism during its evolutionary development. In this work, I studied the ontogeny and development of three species of the genus Trophon by geometric morphometrics, in order to clarify important concepts in evolutionary developmental biology (Evo-Devo). Integrating theoretical and empirical investigations, I could propose a new conceptual framework for heterochrony in a context of a complex theory of recapitulation. Furthermore, I could detect a developmental constraint in Trophon, which provided an opportunity to reconstruct the concept of constraint and propose a synthesis between heterochrony and constraint that explained evolution as a process fueled by them, that is, as directive and driving force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号