首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coarse-graining of protein interactions provides a means of simulating large biological systems. Here, a coarse-graining method, REACH, is introduced, in which the force constants of a residue-scale elastic network model are calculated from the variance-covariance matrix obtained from atomistic molecular dynamics (MD) simulation. In test calculations, the C(alpha)-atoms variance-covariance matrices are calculated from the ensembles of 1-ns atomistic MD trajectories in monomeric and dimeric myoglobin, and used to derive coarse-grained force constants for the local and nonbonded interactions. Construction of analytical model functions of the distance-dependence of the interresidue force constants allows rapid calculation of the REACH normal modes. The model force constants from monomeric and dimeric myoglobin are found to be similar in magnitude to each other. The MD intra- and intermolecular mean-square fluctuations and the vibrational density of states are well reproduced by the residue-scale REACH normal modes without requiring rescaling of the force constant parameters. The temperature-dependence of the myoglobin REACH force constants reveals that the dynamical transition in protein internal fluctuations arises principally from softening of the elasticity in the nonlocal interactions. The REACH method is found to be a reliable way of determining spatiotemporal protein motion without the need for expensive computations of long atomistic MD simulations.  相似文献   

2.
The mechanical properties of biomolecules play pivotal roles in regulating cellular functions. For instance, extracellular mechanical stimuli are converted to intracellular biochemical activities by membrane receptors and their downstream adaptor proteins during mechanotransduction. In general, proteins favor the conformation with the lowest free energy. External forces modify the energy landscape of proteins and drive them to unfolded or deformed conformations that are of functional relevance. Therefore, the study of the physical properties of proteins under external forces is of fundamental importance to understand their functions in cellular mechanics. Here, a coarse-grained computational model was developed to simulate the unfolding or deformation of proteins under mechanical perturbation. By applying this method to unfolding of previously studied proteins or protein fragments with external forces, we demonstrated that our results are quantitatively comparable to previous experimental or all-atom computational studies. The model was further extended to the problem of elastic deformation of large protein complexes formed between membrane receptors and their ligands. Our studies of binding between T cell receptor (TCR) and major histocompatibility complex (MHC) illustrated that stretching of MHC ligand initially lowers its binding energy with TCR, supporting the recent experimental report that TCR/MHC complex is formed through the catch-bond mechanism. Finally, the method was, for the first time, applied to pulling of an eight-cadherin cluster that was formed by their trans and cis binding interfaces. Our simulation results show that mechanical properties of adherens junctions are functionally important to cell adhesion.  相似文献   

3.
4.
Prediction of protein structural classes by neural network   总被引:6,自引:0,他引:6  
Cai Y  Zhou G 《Biochimie》2000,82(8):783-785
  相似文献   

5.
Kurgan LA  Zhang T  Zhang H  Shen S  Ruan J 《Amino acids》2008,35(3):551-564
Structural class categorizes proteins based on the amount and arrangement of the constituent secondary structures. The knowledge of structural classes is applied in numerous important predictive tasks that address structural and functional features of proteins. We propose novel structural class assignment methods that use one-dimensional (1D) secondary structure as the input. The methods are designed based on a large set of low-identity sequences for which secondary structure is predicted from their sequence (PSSAsc model) or assigned based on their tertiary structure (SSAsc). The secondary structure is encoded using a comprehensive set of features describing count, content, and size of secondary structure segments, which are fed into a small decision tree that uses ten features to perform the assignment. The proposed models were compared against seven secondary structure-based and ten sequence-based structural class predictors. Using the 1D secondary structure, SSAsc and PSSAsc can assign proteins to the four main structural classes, while the existing secondary structure-based assignment methods can predict only three classes. Empirical evaluation shows that the proposed models are quite promising. Using the structure-based assignment performed in SCOP (structural classification of proteins) as the golden standard, the accuracy of SSAsc and PSSAsc equals 76 and 75%, respectively. We show that the use of the secondary structure predicted from the sequence as an input does not have a detrimental effect on the quality of structural class assignment when compared with using secondary structure derived from tertiary structure. Therefore, PSSAsc can be used to perform the automated assignment of structural classes based on the sequences.  相似文献   

6.
Prediction of protein classification is an important topic in molecular biology. This is because it is able to not only provide useful information from the viewpoint of structure itself, but also greatly stimulate the characterization of many other features of proteins that may be closely correlated with their biological functions. In this paper, the LogitBoost, one of the boosting algorithms developed recently, is introduced for predicting protein structural classes. It performs classification using a regression scheme as the base learner, which can handle multi-class problems and is particularly superior in coping with noisy data. It was demonstrated that the LogitBoost outperformed the support vector machines in predicting the structural classes for a given dataset, indicating that the new classifier is very promising. It is anticipated that the power in predicting protein structural classes as well as many other bio-macromolecular attributes will be further strengthened if the LogitBoost and some other existing algorithms can be effectively complemented with each other.  相似文献   

7.
李楠  李春 《生物信息学》2012,10(4):238-240
基于氨基酸的16种分类模型,给出蛋白质序列的派生序列,进而结合加权拟熵和LZ复杂度构造出34维特征向量来表示蛋白质序列。借助于贝叶斯分类器对同源性不超过25%的640数据集进行蛋白质结构类预测,准确度达到71.28%。  相似文献   

8.
9.
Using supervised fuzzy clustering to predict protein structural classes   总被引:2,自引:0,他引:2  
Prediction of protein classification is both an important and a tempting topic in protein science. This is because of not only that the knowledge thus obtained can provide useful information about the overall structure of a query protein, but also that the practice itself can technically stimulate the development of novel predictors that may be straightforwardly applied to many other relevant areas. In this paper, a novel approach, the so-called "supervised fuzzy clustering approach" is introduced that is featured by utilizing the class label information during the training process. Based on such an approach, a set of "if-then" fuzzy rules for predicting the protein structural classes are extracted from a training dataset. It has been demonstrated through two different working datasets that the overall success prediction rates obtained by the supervised fuzzy clustering approach are all higher than those by the unsupervised fuzzy c-means introduced by the previous investigators [C.T. Zhang, K.C. Chou, G.M. Maggiora. Protein Eng. (1995) 8, 425-435]. It is anticipated that the current predictor may play an important complementary role to other existing predictors in this area to further strengthen the power in predicting the structural classes of proteins and their other characteristic attributes.  相似文献   

10.
Sun XD  Huang RB 《Amino acids》2006,30(4):469-475
Summary. The support vector machine, a machine-learning method, is used to predict the four structural classes, i.e. mainly α, mainly β, α–β and fss, from the topology-level of CATH protein structure database. For the binary classification, any two structural classes which do not share any secondary structure such as α and β elements could be classified with as high as 90% accuracy. The accuracy, however, will decrease to less than 70% if the structural classes to be classified contain structure elements in common. Our study also shows that the dimensions of feature space 202 = 400 (for dipeptide) and 203 = 8 000 (for tripeptide) give nearly the same prediction accuracy. Among these 4 structural classes, multi-class classification gives an overall accuracy of about 52%, indicating that the multi-class classification technique in support of vector machines may still need to be further improved in future investigation.  相似文献   

11.
A genetic algorithm (GA) for feature selection in conjunction with neural network was applied to predict protein structural classes based on single amino acid and all dipeptide composition frequencies. These sequence parameters were encoded as input features for a GA in feature selection procedure and classified with a three-layered neural network to predict protein structural classes. The system was established through optimization of the classification performance of neural network which was used as evaluation function. In this study, self-consistency and jackknife tests on a database containing 498 proteins were used to verify the performance of this hybrid method, and were compared with some of prior works. The adoption of a hybrid model, which encompasses genetic and neural technologies, demonstrated to be a promising approach in the task of protein structural class prediction.  相似文献   

12.
The flavoenzymes dihydroorotate dehydrogenases (DHODs) catalyze the fourth and only redox step in the de novo biosynthesis of UMP. Enzymes belonging to class 2, according to their amino acid sequence, are characterized by having a serine residue as the catalytic base and a longer N terminus. The structure of class 2 E. coli DHOD, determined by MAD phasing, showed that the N-terminal extension forms a separate domain. The catalytic serine residue has an environment differing from the equivalent cysteine in class 1 DHODs. Significant differences between the two classes of DHODs were identified by comparison of the E. coli DHOD with the other known DHOD structures, and differences with the class 2 human DHOD explain the variation in their inhibitors.  相似文献   

13.
The relationship between the synonymous codon usage and different protein secondary structural classes were investigated using 401 Homo sapiens proteins extracted from Protein Data Bank (PDB). A simple Chi-square test was used to assess the significance of deviation of the observed and expected frequencies of 59 codons at the level of individual synonymous families in the four different protein secondary structural classes. It was observed that synonymous codon families show non-randomness in codon usage in four different secondary structural classes. However,when the genes were classified according to their GC3 levels there was an increase in non-randomness in high GC3 group of genes. The non-randomness in codon usage was further tested among the same protein secondary structures belonging to four different protein folding classes of high GC3 group of genes. The results show that in each of the protein secondary structural unit there exist some synonymous family that shows class specific codon-usage pattern. Moreover, there is an increased non-random behaviour of synonymous codons in sheet structure of all secondary structural classes in high GC3 group of genes. Biological implications of these results have been discussed.  相似文献   

14.
15.
A key driving force in determination of protein structural classes.   总被引:13,自引:0,他引:13  
The three-dimensional structure of a protein is uniquely dictated by its primary sequence. However, owing to the very high degenerative nature of the sequence-structure relationship, proteins are generally folded into one of only a few structural classes that are closely correlated with the amino-acid composition. This suggests that the interaction among the components of amino acid composition may play a considerable role in determining the structural class of a protein. To quantitatively test such a hypothesis at a deeper level, three potential functions, U((0)), U((1)), and U((2)), were formulated that respectively represent the 0th-order, 1st-order, and 2nd-order approximations for the interaction among the components of the amino acid composition in a protein. It was observed that the correct rates in recognizing protein structural classes by U((2)) are significantly higher than those by U((0)) and U((1)), indicating that an algorithm that can more completely incorporate the interaction contributions will yield better recognition quality, and hence further demonstrate that the interaction among the components of amino acid composition is an important driving force in determining the structural class of a protein during the sequence folding process.  相似文献   

16.
Knowledge of amino acid composition, alone, is verified here to be sufficient for recognizing the structural class, α, β, α+β, or α/β of a given protein with an accuracy of 81%. This is supported by results from exhaustive enumerations of all conformations for all sequences of simple, compact lattice models consisting of two types (hydrophobic and polar) of residues. Different compositions exhibit strong affinities for certain folds. Within the limits of validity of the lattice models, two factors appear to determine the choice of particular folds: 1) the coordination numbers of individual sites and 2) the size and geometry of non-bonded clusters. These two properties, collectively termed the distribution of non-bonded contacts, are quantitatively assessed by an eigenvalue analysis of the so-called Kirchhoff or adjacency matrices obtained by considering the non-bonded interactions on a lattice. The analysis permits the identification of conformations that possess the same distribution of non-bonded contacts. Furthermore, some distributions of non-bonded contacts are favored entropically, due to their high degeneracies. Thus, a competition between enthalpic and entropic effects is effective in determining the choice of a distribution for a given composition. Based on these findings, an analysis of non-bonded contacts in protein structures was made. The analysis shows that proteins belonging to the four distinct folding classes exhibit significant differences in their distributions of non-bonded contacts, which more directly explains the success in predicting structural class from amino acid composition. Proteins 29:172–185, 1997. Published 1997 Wiley-Liss, Inc.
  • 1 This article is a US Goverment work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    17.
    The study of solutions of biomacromolecules provides an important basis for understanding the behavior of many fundamental cellular processes, such as protein folding, self-assembly, biochemical reactions, and signal transduction. Here, we describe a Brownian dynamics simulation procedure and its validation for the study of the dynamic and structural properties of protein solutions. In the model used, the proteins are treated as atomically detailed rigid bodies moving in a continuum solvent. The protein-protein interaction forces are described by the sum of electrostatic interaction, electrostatic desolvation, nonpolar desolvation, and soft-core repulsion terms. The linearized Poisson-Boltzmann equation is solved to compute electrostatic terms. Simulations of homogeneous solutions of three different proteins with varying concentrations, pH, and ionic strength were performed. The results were compared to experimental data and theoretical values in terms of long-time self-diffusion coefficients, second virial coefficients, and structure factors. The results agree with the experimental trends and, in many cases, experimental values are reproduced quantitatively. There are no parameters specific to certain protein types in the interaction model, and hence the model should be applicable to the simulation of the behavior of mixtures of macromolecules in cell-like crowded environments.  相似文献   

    18.
    Ding S  Zhang S  Li Y  Wang T 《Biochimie》2012,94(5):1166-1171
    Knowledge of structural classes plays an important role in understanding protein folding patterns. In this paper, features based on the predicted secondary structure sequence and the corresponding E–H sequence are extracted. Then, an 11-dimensional feature vector is selected based on a wrapper feature selection algorithm and a support vector machine (SVM). Among the 11 selected features, 4 novel features are newly designed to model the differences between α/β class and α + β class, and other 7 rational features are proposed by previous researchers. To examine the performance of our method, a total of 5 datasets are used to design and test the proposed method. The results show that competitive prediction accuracies can be achieved by the proposed method compared to existing methods (SCPRED, RKS-PPSC and MODAS), and 4 new features are demonstrated essential to differentiate α/β and α + β classes. Standalone version of the proposed method is written in JAVA language and it can be downloaded from http://web.xidian.edu.cn/slzhang/paper.html.  相似文献   

    19.
    Ellis JJ  Broom M  Jones S 《Proteins》2007,66(4):903-911
    A data set of 89 protein-RNA complexes has been extracted from the Protein Data Bank, and the nucleic acid recognition sites characterized through direct contacts, accessible surface area, and secondary structure motifs. The differences between RNA recognition sites that bind to RNAs in functional classes has also been analyzed. Analysis of the complete data set revealed that van der Waals interactions are more numerous than hydrogen bonds and the contacts made to the nucleic acid backbone occur more frequently than specific contacts to nucleotide bases. Of the base-specific contacts that were observed, contacts to guanine and adenine occurred most frequently. The most favored amino acid-nucleotide pairings observed were lysine-phosphate, tyrosine-uracil, arginine-phosphate, phenylalanine-adenine and tryptophan-guanine. The amino acid propensities showed that positively charged and polar residues were favored as expected, but also so were tryptophan and glycine. The propensities calculated for the functional classes showed trends similar to those observed for the complete data set. However, the analysis of hydrogen bond and van der Waal contacts showed that in general proteins complexed with messenger RNA, transfer RNA and viral RNA have more base specific contacts and less backbone contacts than expected, while proteins complexed with ribosomal RNA have less base-specific contacts than the expected. Hence, whilst the types of amino acids involved in the interfaces are similar, the distribution of specific contacts is dependent upon the functional class of the RNA bound.  相似文献   

    20.
    With the explosive growth of biological data, the development of new means of data storage was needed. More and more often biological information is no longer published in the conventional way via a publication in a scientific journal, but only deposited into a database. In the last two decades these databases have become essential tools for researchers in biological sciences. Biological databases can be classified according to the type of information they contain. There are basically three types of sequence-related databases (nucleic acid sequences, protein sequences and protein tertiary structures) as well as various specialized data collections. It is important to provide the users of biomolecular databases with a degree of integration between these databases as by nature all of these databases are connected in a scientific sense and each one of them is an important piece to biological complexity. In this review we will highlight our effort in connecting biological information as demonstrated in the SWISS-PROT protein database.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号