首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H+-transporting, F1Fo-type ATP synthases utilize a transmembrane H+ potential to drive ATP formation by a rotary catalytic mechanism. ATP is formed in alternating β subunits of the extramembranous F1 sector of the enzyme, synthesis being driven by rotation of the γ subunit in the center of the F1 molecule between the alternating catalytic sites . The H+ electrochemical potential is thought to drive γ subunit rotation by first coupling H+ transport to rotation of an oligomeric rotor of c subunits within the transmembrane Fo sector. The γ subunit is forced to turn with the c-oligomeric rotor due to connections between subunit c and the γ and ε subunits of F1. In this essay we will review recent studies on the Escherichia coli Fo sector. The monomeric structure of subunit c, determined by NMR, shows that subunit c folds in a helical hairpin with the proton carrying Asp61 centered in the second transmembrane helix (TMH). A model for the structural organization of the c10 oligomer in Fo was deduced from extensive cross-linking studies and by molecular modeling. The model indicates that the H+-carrying carboxyl of subunit c is occluded between neighboring subunits of the c10 oligomer and that two c subunits pack in a “front-to-back” manner to form the H+ (cation) binding site. In order for protons to gain access to Asp61 during the protonation/deprotonation cycle, we propose that the outer, Asp61-bearing TMH-2s of the c-ring and TMHs from subunits composing the inlet and outlet channels must turn relative to each other, and that the swiveling motion associated with Asp61 protonation/deprotonation drives the rotation of the c-ring. The NMR structures of wild-type subunit c differs according to the protonation state of Asp61. The idea that the conformational state of subunit c changes during the catalytic cycle is supported by the cross-linking evidence in situ, and two recent NMR structures of functional mutant proteins in which critical residues have been switched between TMH-1 and TMH-2. The structural information is considered in the context of the possible mechanism of rotary movement of the c10 oligomer during coupled synthesis of ATP.  相似文献   

2.
The c subunit of Streptococcus mutans ATP synthase (FoF1) is functionally exchangeable with that of Escherichia coli, since E. coli with a hybrid FoF1 is able to grow on minimum succinate medium through oxidative phosphorylation. E. coli F1 bound to the hybrid Fo with the S. mutans c subunit showed N,N′-dicyclohexylcarbodiimide-sensitive ATPase activity similar to that of E. coli FoF1. Thus, the S. mutans c subunit assembled into a functional Fo together with the E. coli a and b subunits, forming a normal F1 binding site. Although the H+ pathway should be functional, as was suggested by the growth on minimum succinate medium, ATP-driven H+ transport could not be detected with inverted membrane vesicles in vitro. This observation is partly explained by the presence of an acidic residue (Glu-20) in the first transmembrane helix of the S. mutans c subunit, since the site-directed mutant carrying Gln-20 partly recovered the ATP-driven H+ transport. Since S. mutans is recognized to be a primary etiological agent of human dental caries and is one cause of bacterial endocarditis, our system that expresses hybrid Fo with the S. mutans c subunit would be helpful to find antibiotics and chemicals specifically directed to S. mutans.  相似文献   

3.
Subunit a plays a key role in promoting H+ transport-coupled rotary motion of the subunit c ring in F1Fo ATP synthase. H+ binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of Fo subunit c. H+ are thought to reach cAsp61 via aqueous half-channels formed by TMHs 2–5 of subunit a. Movements of TMH4 and TMH5 have been proposed to facilitate protonation of cAsp61 from a half channel centered in a four helix bundle at the periplasmic side of subunit a. The possible necessity of these proposed TMH movements was investigated by assaying ATP driven H+ pumping function before and after cross-linking paired Cys substitutions at the center of TMHs within subunit a. The cross-linking of the Cys pairs aG218C/I248C in TMH4 and TMH5, and aL120C/H245C in TMH2 and TMH5, inhibited H+ pumping by 85–90%. H+ pumping function was largely unaffected by modification of the same Cys residues in the absence of cross-link formation. The inhibition is consistent with the proposed requirement for TMH movements during the gating of periplasmic H+ access to cAsp61. The cytoplasmic loops of subunit a have been implicated in gating H+ release to the cytoplasm, and previous cross-linking experiments suggest that the chemically reactive regions of the loops may pack as a single domain. Here we show that Cys substitutions in these domains can be cross-linked with retention of function and conclude that these domains need not undergo large conformational changes during enzyme function.  相似文献   

4.
《BBA》2023,1864(2):148962
F1Fo ATP synthase is a ubiquitous molecular motor that utilizes a rotary mechanism to synthesize adenosine triphosphate (ATP), the fundamental energy currency of life. The membrane-embedded Fo motor converts the electrochemical gradient of protons into rotation, which is then used to drive the conformational changes in the soluble F1 motor that catalyze ATP synthesis. In E. coli, the Fo motor is composed of a c10 ring (rotor) alongside subunit a (stator), which together provide two aqueous half channels that facilitate proton translocation. Previous work has suggested that Arg50 and Thr51 on the cytoplasmic side of each subunit c are involved in the proton translocation process, and positive charge is conserved in this region of subunit c. To further investigate the role of these residues and the chemical requirements for activity at these positions, we generated 13 substitution mutants and assayed their in vitro ATP synthesis, H+ pumping, and passive H+ permeability activities, as well as the ability of mutants to carry out oxidative phosphorylation in vivo. While polar and hydrophobic mutations were generally tolerated in either position, introduction of negative charge or removal of polarity caused a substantial defect. We discuss the possible effects of altered electrostatics on the interaction between the rotor and stator, water structure in the aqueous channel, and interaction of the rotor with cardiolipin.  相似文献   

5.
H+-transporting F1Fo ATP synthase catalyzes the synthesis of ATP via coupled rotary motors within Fo and F1. H+ transport at the subunit a–c interface in trans-membranous Fo drives rotation of the c-ring within the membrane, with subunit c being bound in a complex with the γ and ε subunits extending from the membrane. Finally, the rotation of subunit γ within the α3β3 sector of F1 mechanically drives ATP synthesis within the catalytic sites. In this review, we propose and provide evidence supporting the route of proton transfer via half channels from one side of the membrane to the other, and the mechanism of gating H+ binding to and release from Asp61 of subunit c, via conformational movements of Arg210 in subunit a. We propose that protons are gated from the inside of a four-helix bundle at the periplasmic side of subunit a to drive protonation of cAsp61, and that this gating movement is facilitated by the swiveling of trans-membrane helices (TMHs) 4 and 5 at the site of interaction with cAsp61 on the periphery of the c-ring. Proton release to the cytoplasmic half channel is facilitated by the movement of aArg210 as a consequence of this proposed helical swiveling. Finally, release from the cytoplasmic half channel is mediated by residues in a complex of interacting extra-membraneous loops formed between TMHs of both subunits a and c. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

6.
A model is described of a dodecameric complex consisting of the integral membrane component subunit c of the H+-transporting Fo domain of Escherichia coli F-ATPase. A high-resolution partial structure of monomeric subunit c resulting from 1H-NMR studies [1] was used for constructing the model. The validity of the proposed arrangement of protomers in the dodecameric complex was tested by amino acid substitution analysis and chemical, biochemical and genetic data on subunit c.  相似文献   

7.
FoF1-ATP synthase catalyzes ATP hydrolysis/synthesis coupled with a transmembrane H+ translocation in membranes. The Fo c-subunit ring plays a major role in this reaction. We have developed an assignment strategy for solid-state 13C NMR (ssNMR) signals of the Fo c-subunit ring of thermophilic Bacillus PS3 (TFo c-ring, 72 residues), carrying one of the basic folds of membrane proteins. In a ssNMR spectrum of uniformly 13C-labeled sample, the signal overlap has been a major bottleneck because most amino acid residues are hydrophobic. To overcome signal overlapping, we developed a method designated as COmplementary Sequential assignment with MInimum Labeling Ensemble (COSMILE). According to this method, we generated three kinds of reverse-labeled samples to suppress signal overlapping. To assign the carbon signals sequentially, two-dimensional Cα(i+1)–C′Cα(i) correlation and dipolar assisted rotational resonance (DARR) experiments were performed under magic-angle sample spinning. On the basis of inter- and intra-residue 13C–13C chemical shift correlations, 97% of Cα, 97% of Cβ and 92% of C′ signals were assigned directly from the spectra. Secondary structure analysis predicted a hairpin fold of two helices with a central loop. The effects of saturated and unsaturated phosphatidylcholines on TFo c-ring structure were examined. The DARR spectra at 15 ms mixing time are essentially similar to each other in saturated and unsaturated lipid membranes, suggesting that TFo c-rings have similar structures under the different environments. The spectrum of the sample in saturated lipid membranes showed better resolution and structural stability in the gel state. The C-terminal helix was suggested to locate in the outer layer of the c-ring.  相似文献   

8.
The subunit c-ring of H+-ATP synthase (Fo c-ring) plays an essential role in the proton translocation across a membrane driven by the electrochemical potential. To understand its structure and function, we have carried out solid-state NMR analysis under magic-angle sample spinning. The uniformly [13C, 15N]-labeled Fo c from E. coli (EFo c) was reconstituted into lipid membranes as oligomers. Its high resolution two- and three-dimensional spectra were obtained, and the 13C and 15N signals were assigned. The obtained chemical shifts suggested that EFo c takes on a hairpin-type helix-loop-helix structure in membranes as in an organic solution. The results on the magnetization transfer between the EFo c and deuterated lipids indicated that Ile55, Ala62, Gly69 and F76 were lined up on the outer surface of the oligomer. This is in good agreement with the cross-linking results previously reported by Fillingame and his colleagues. This agreement reveals that the reconstituted EFo c oligomer takes on a ring structure similar to the intact one in vivo. On the other hand, analysis of the 13C nuclei distance of [3-13C]Ala24 and [4-13C]Asp61 in the Fo c-ring did not agree with the model structures proposed for the EFo c-decamer and dodecamer. Interestingly, the carboxyl group of the essential Asp61 in the membrane-embedded EFo c-ring turned out to be protonated as COOH even at neutral pH. The hydrophobic surface of the EFo c-ring carries relatively short side chains in its central region, which may allow soft and smooth interactions with the hydrocarbon chains of lipids in the liquid-crystalline state.  相似文献   

9.
We have proposed a model for the oligomeric c-rotor of the Fo sector of ATP synthase and its interaction with subunit a during H+-transport driven rotation. The model is based upon the solution structure of monomeric subunit c, determined by NMR, and an extensive series of cross-linking distance constraints between c subunits and between subunits c and a. To explain the complete set of cross-linking data, we have suggested that the second transmembrane helix rotates during its interaction with subunit a in the course of the H+-translocation cycle. The H+-transport coupled rotation of this helix is proposed to drive the stepwise movement of the c-oligomeric rotor. The model is testable and provides a useful framework for addressing questions raised by other experiments.  相似文献   

10.
FoF1-ATP synthase uses the electrochemical potential across membranes or ATP hydrolysis to rotate the Foc-subunit ring. To elucidate the underlying mechanism, we carried out a structural analysis focused on the active site of the thermophilic c-subunit (TFoc) ring in membranes with a solid-state NMR method developed for this purpose. We used stereo-array isotope labeling (SAIL) with a cell-free system to highlight the target. TFoc oligomers were purified using a virtual ring His tag. The membrane-reconstituted TFoc oligomer was confirmed to be a ring indistinguishable from that expressed in E. coli on the basis of the H+-translocation activity and high-speed atomic force microscopic images. For the analysis of the active site, 2D 13C-13C correlation spectra of TFoc rings labeled with SAIL-Glu and -Asn were recorded. Complete signal assignment could be performed with the aid of the Cαi+1-Cαi correlation spectrum of specifically 13C,15N-labeled TFoc rings. The Cδ chemical shift of Glu-56, which is essential for H+ translocation, and related crosspeaks revealed that its carboxyl group is protonated in the membrane, forming the H+-locked conformation with Asn-23. The chemical shift of Asp-61 Cγ of the E. coli c ring indicated an involvement of a water molecule in the H+ locking, in contrast to the involvement of Asn-23 in the TFoc ring, suggesting two different means of proton storage in the c rings.  相似文献   

11.
Rotary catalysis in F1F0 ATP synthase is powered by proton translocation through the membrane-embedded F0 sector. Proton binding and release occur in the middle of the membrane at Asp-61 on the second transmembrane helix (TMH) of subunit c, which folds in a hairpin-like structure with two TMHs. Previously, the aqueous accessibility of Cys substitutions in the transmembrane regions of subunit c was probed by testing the inhibitory effects of Ag+ or Cd2+ on function, which revealed extensive aqueous access in the region around Asp-61 and on the half of TMH2 extending to the cytoplasm. In the current study, we surveyed the Ag+ and Cd2+ sensitivity of Cys substitutions in the loop of the helical hairpin and used a variety of assays to categorize the mechanisms by which Ag+ or Cd2+ chelation with the Cys thiolates caused inhibition. We identified two distinct metal-sensitive regions in the cytoplasmic loop where function was inhibited by different mechanisms. Metal binding to Cys substitutions in the N-terminal half of the loop resulted in an uncoupling of F1 from F0 with release of F1 from the membrane. In contrast, substitutions in the C-terminal half of the loop retained membrane-bound F1 after metal treatment. In several of these cases, inhibition was shown to be due to blockage of passive H+ translocation through F0 as assayed with F0 reconstituted into liposomes. The results suggest that the C-terminal domain of the cytoplasmic loop may function in gating H+ translocation to the cytoplasm.  相似文献   

12.
FoF1-ATP synthase uses the electrochemical potential across membranes or ATP hydrolysis to rotate the Foc-subunit ring. To elucidate the underlying mechanism, we carried out a structural analysis focused on the active site of the thermophilic c-subunit (TFoc) ring in membranes with a solid-state NMR method developed for this purpose. We used stereo-array isotope labeling (SAIL) with a cell-free system to highlight the target. TFoc oligomers were purified using a virtual ring His tag. The membrane-reconstituted TFoc oligomer was confirmed to be a ring indistinguishable from that expressed in E. coli on the basis of the H+-translocation activity and high-speed atomic force microscopic images. For the analysis of the active site, 2D 13C-13C correlation spectra of TFoc rings labeled with SAIL-Glu and -Asn were recorded. Complete signal assignment could be performed with the aid of the Cαi+1-Cαi correlation spectrum of specifically 13C,15N-labeled TFoc rings. The Cδ chemical shift of Glu-56, which is essential for H+ translocation, and related crosspeaks revealed that its carboxyl group is protonated in the membrane, forming the H+-locked conformation with Asn-23. The chemical shift of Asp-61 Cγ of the E. coli c ring indicated an involvement of a water molecule in the H+ locking, in contrast to the involvement of Asn-23 in the TFoc ring, suggesting two different means of proton storage in the c rings.  相似文献   

13.
Single molecule atomic force microscopy (smAFM) was employed to unfold transmembrane domain interactions of a unique vacuolar H+-pyrophosphatase (EC 3.6.1.1) from Vigna radiata. H+-Pyrophosphatase is a membrane-embedded homodimeric protein containing a single type of polypeptide and links PPi hydrolysis to proton translocation. Each subunit consists of 16 transmembrane domains with both ends facing the lumen side. In this investigation, H+-pyrophosphatase was reconstituted into the lipid bilayer in the same orientation for efficient fishing out of the membrane by smAFM. The reconstituted H+-pyrophosphatase in the lipid bilayer showed an authentically dimeric structure, and the size of each monomer was ∼4 nm in length, ∼2 nm in width, and ∼1 nm in protrusion height. Upon extracting the H+-pyrophosphatase out of the membrane, force-distance curves containing 10 peaks were obtained and assigned to distinct domains. In the presence of pyrophosphate, phosphate, and imidodiphosphate, the numbers of interaction curves were altered to 7, 8, and 10, respectively, concomitantly with significant modification in force strength. The substrate-binding residues were further replaced to verify these domain changes upon substrate binding. A working model is accordingly proposed to show the interactions between transmembrane domains of H+-pyrophosphatase in the presence and absence of substrate and its analog.  相似文献   

14.
The functional mechanism of the F1Fo ATP synthase, like many membrane transporters and pumps, entails a conformational cycle that is coupled to the movement of H+ or Na+ ions across its transmembrane domain, down an electrochemical gradient. This coupling is an efficient means of energy transduction and regulation, provided that ion binding to the membrane domain, known as Fo, is appropriately selective. In this study we set out to establish the structural and energetic basis for the ion-binding selectivity of the membrane-embedded Fo rotors of two representative ATP synthases. First, we use a biochemical approach to demonstrate the inherent binding selectivity of these rotors, that is, independently from the rest of the enzyme. We then use atomically detailed computer simulations of wild-type and mutagenized rotors to calculate and rationalize their selectivity, on the basis of the structure, dynamics and coordination chemistry of the binding sites. We conclude that H+ selectivity is most likely a robust property of all Fo rotors, arising from the prominent presence of a conserved carboxylic acid and its intrinsic chemical propensity for protonation, as well as from the structural plasticity of the binding sites. In H+-coupled rotors, the incorporation of hydrophobic side chains to the binding sites enhances this inherent H+ selectivity. Size restriction may also favor H+ over Na+, but increasing size alone does not confer Na+ selectivity. Rather, the degree to which Fo rotors may exhibit Na+ coupling relies on the presence of a sufficient number of suitable coordinating side chains and/or structural water molecules. These ligands accomplish a shift in the relative binding energetics, which under some physiological conditions may be sufficient to provide Na+ dependence.  相似文献   

15.
Interactions of hydrophobically-modified poly-(N-isopropylacrylamides) (HM PNIPAM) with phospholipid liposomes were studied as a function of the lipid type, the lipid bilayer fluidity, and the polymer conformation. Fluorescence experiments monitoring non-radiative energy transfer (NRET), between naphthalene attached to the HM PNIPAM and 1,6-diphenyl-1,3,5-hexatriene (DPH) incorporated into the lipid bilayer, confirmed the direct penetration of hydrophobic anchor groups linked to the polymer into the liposome hydrophobic core. Contraction of the polymer backbone above the lower critical solution temperature (LCST) resulted in a partial withdrawal of the anchor groups from the lipid bilayer. Analysis of polymer/lipid mixtures by centrifugation and quasi-elastic light scattering (QELS) revealed the polymer-induced fission of liposomes in the liquid-crystalline state, resulting in the formation of vesicles 150–230 nm in diameter. The process is reversible and upon transition of the bilayer into the gel state these vesicles are converted into larger aggregates. According to the results of gel-filtration experiments the HM PNIPAM is in dynamic exchange between the liquid-crystalline lipid bilayer and the water solution, while the binding to the bilayer in the gel state is more static in nature. The binding constant for mixture of HM PNIPAM with DMPC liposomes, evaluated from the centrifugation experiments, was found to be 120 M−1.  相似文献   

16.
The Na+ F1FO ATP synthase of the anaerobic, acetogenic bacterium Acetobacterium woodii has a unique FOVO hybrid rotor that contains nine copies of a FO-like c subunit and one copy of a VO-like c 1 subunit with one ion binding site in four transmembrane helices whose cellular function is obscure. Since a genetic system to address the role of different c subunits is not available for this bacterium, we aimed at a heterologous expression system. Therefore, we cloned and expressed its Na+ F1FO ATP synthase operon in Escherichia coli. A Δatp mutant of E. coli produced a functional, membrane-bound Na+ F1FO ATP synthase that was purified in a single step after inserting a His6-tag to its β subunit. The purified enzyme was competent in Na+ transport and contained the FOVO hybrid rotor in the same stoichiometry as in A. woodii. Deletion of the atpI gene from the A. woodii operon resulted in a loss of the c ring and a mis-assembled Na+ F1FO ATP synthase. AtpI from E. coli could not substitute AtpI from A. woodii. These data demonstrate for the first time a functional production of a FOVO hybrid rotor in E. coli and revealed that the native AtpI is required for assembly of the hybrid rotor.  相似文献   

17.
Phosphorylated and non-phosphorylated forms of the F0F1-ATPase subunit c from rat liver mitochondria (RLM) were purified and their effect on the opening of the permeability transition pore (mPTP) was investigated. Addition of dephosphorylated subunit c to RLM induced mitochondrial swelling, decreased the membrane potential and reduced the Ca2+ uptake capacity, which was prevented by cyclosporin A. The same effect was observed in the presence of storage subunit c purified from livers of sheep affected with ceroid lipofuscinosis. In black-lipid bilayer membranes subunit c increased the conductance due to formation of single channels with fast and slow kinetics. The dephosphorylated subunit c formed channels with slow kinetics, i.e. the open state being of significantly longer duration than in the case of channels formed by the phosphorylated form that had short life spans and fast kinetics. The channels formed were cation-selective more so with the phosphorylated form. Subunit c of rat liver mitochondria was able to bind Ca2+. Collectively, the data allowed us to suppose that subunit c F0F1-ATPase might be a structural/regulatory component of mPTP exerting its role in dependence on phosphorylation status.  相似文献   

18.
The rotation of F1Fo-ATP synthase is powered by the proton motive force across the energy-transducing membrane. The protein complex functions like a turbine; the proton flow drives the rotation of the c-ring of the transmembrane Fo domain, which is coupled to the ATP-producing F1 domain. The hairpin-structured c-protomers transport the protons by reversible protonation/deprotonation of a conserved Asp/Glu at the outer transmembrane helix (TMH). An open question is the proton transfer pathway through the membrane at atomic resolution. The protons are thought to be transferred via two half-channels to and from the conserved cAsp/Glu in the middle of the membrane. By molecular dynamics simulations of c-ring structures in a lipid bilayer, we mapped a water channel as one of the half-channels. We also analyzed the suppressor mutant cP24D/E61G in which the functional carboxylate is shifted to the inner TMH of the c-protomers. Current models concentrating on the “locked” and “open” conformations of the conserved carboxylate side chain are unable to explain the molecular function of this mutant. Our molecular dynamics simulations revealed an extended water channel with additional water molecules bridging the distance of the outer to the inner TMH. We suggest that the geometry of the water channel is an important feature for the molecular function of the membrane part of F1Fo-ATP synthase. The inclination of the proton pathway isolates the two half-channels and may contribute to a favorable clockwise rotation in ATP synthesis mode.  相似文献   

19.
The interaction of the surfactant octyl glucoside (OG) with dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC), and soy bean phosphatidylcholine (soy bean PC) was studied using high-sensitivity titration calorimetry. We determined the partition coefficient of OG between water and lipid bilayers and the transfer enthalpy of the surfactant by addition of lipid vesicles to OG monomers or vice versa. Comparison with the micellization enthalpy of the surfactant gives information on differences in the hydrophobic environment of OG in a liquid-crystalline bilayer or a micelle. The average partition coefficient P in mole fraction units for xe≈0.12–0.2 decreases slightly from 4152 at 27°C to 3479 at 70°C for DMPC and from 4260 to 3879 for soy bean PC, respectively. The transfer enthalpy ΔHT of OG into lipid vesicles is positive at 27°C and negative at 70°C. Its temperature dependence is larger for the incorporation of OG into DMPC than into soy bean PC vesicles. It is concluded that OG in DMPC vesicles is better shielded from water than in soy bean PC vesicles or in micelles. Titration calorimetry was also used to determine the phase boundaries of the coexistence region of mixed vesicles and mixed micelles in the systems OG/DMPC, OG/DPPC, OG/DSPC, and OG/soy bean PC vesicles at 70°C in the liquid-crystalline phase. DMPC and soy bean PC solubilization was also studied at 27°C to investigate the effect of temperature. The effective surfactant to lipid ratios at saturation, Resat, for all PCs studied are in the range between 1.33–1.72 and the ratios at complete solubilization, Resol, are between 1.79–3.06. At 70°C, the Resat values decrease with increasing chain length of the saturated PC. The ratios depend also slightly on temperature and the degree of unsaturation of the fatty acyl chains. For the OG/soy bean PC system, the coexistence range for mixed vesicles and mixed micelles is larger than for the corresponding PCs with saturated chains.  相似文献   

20.
The interaction of a model Lys flanked α-helical peptides K2-X24-K2, (X = A,I,L,L+A,V) with lipid bilayers composed of dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) both, in a gel and in a liquid-crystalline state, has been studied by molecular dynamics simulations. It has been shown that these peptides cause disordering of the lipid bilayer in the gel state but only small changes have been monitored in a liquid-crystalline state. The peptides affect ordering of the surrounding lipids depending on the helix stability which is determined by amino acid side chains – their volume, shape, etc. We have shown that the helix does not keep the linear shape in all simulations but often bends or breaks. During some simulations with a very small difference between hydrophobic length of peptide and membrane thickness the peptide exhibits negligible tilt. At the same time changes in peptide conformations during simulations resulted in appearance of superhelix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号