首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substituted cysteine accessibility method was used to probe the surface exposure of a pore-lining threonine residue (T6') common to both the glycine receptor (GlyR) and gamma-aminobutyric acid, type A receptor (GABA(A)R) chloride channels. This residue lies close to the channel activation gate, the ionic selectivity filter, and the main pore blocker binding site. Despite their high amino acid sequence homologies and common role in conducting chloride ions, recent studies have suggested that the GlyRs and GABA(A)Rs have divergent open state pore structures at the 6' position. When both the human alpha1(T6'C) homomeric GlyR and the rat alpha1(T6'C)beta1(T6'C) heteromeric GABA(A)R were expressed in human embryonic kidney 293 cells, their 6' residue surface accessibilities differed significantly in the closed state. However, when a soluble cysteine-modifying compound was applied in the presence of saturating agonist concentrations, both receptors were locked into the open state. This action was not induced by oxidizing agents in either receptor. These results provide evidence for a conserved pore opening mechanism in anion-selective members of the ligand-gated ion channel family. The results also indicate that the GABA(A)R pore structure at the 6' level may vary between different expression systems.  相似文献   

2.
The acetylcholine receptor (AChR) channel is a pentameric protein in which every subunit contributes to the conducting parts of the pore. Recent studies of rat nicotinic AChR channels mutated in the alpha-subunit revealed that a threonine residue (alpha T264) in the transmembrane segment M2 forms part of the narrow region of the channel. We have mutated the residues at homologous positions in the beta-, gamma-, and delta-subunits and measured the resulting change in channel conductance. For all subunits the conductance is inversely related to the volume of the amino acid residue, suggesting that they form part of the channel narrow region. Exchanges of residues between subunits do not alter the conductance, suggesting a ring-like structure formed by homologous amino acids. To investigate the relative contribution of amino acid residues at these positions in determining the channel conductance, receptors carrying the same amino acid in each subunit in the narrow region were constructed. They form functional channels in which the conductance is inversely related to the volume of the amino acids in the narrow region. Channels in which the narrow region is formed by four serines and one valine have the same conductance if the valine is located in the alpha-, beta-, or gamma-subunits, but it is smaller if the valine is located in the delta-subunit. The results suggest a structural asymmetry of the AChR channel in its narrow region formed by the hydroxylated amino acids of alpha-, gamma- and delta-subunits, where the delta-subunit serine is a main determinant of the channel conductance.  相似文献   

3.
The gamma-aminobutyric acid type A (GABA(A)) receptor assembles from individual subunits to form ligand-gated ion channels. Human (h) beta3 subunits assemble to form homomeric surface receptors in somatic cells, but hbeta1 subunits do not. We have identified three distinct sets of amino acid residues in the N-terminal extracellular domain of the hbeta1 subunit, which when mutated to the homologous residue in hbeta3 allow expression as a functional homomeric receptor. The three sets likely result in three modes of assembly. Mode 1 expression results from a single amino acid change at residue hbeta1 Asp-37. Mode 2 expression results from mutations of residues between positions 44 and 73 together with residues between positions 169 and 173. Finally, mode 3 results from the mutations A45V and K196R. Examination of homology-based structural models indicates that many of the residues are unlikely to be involved in physical inter-subunit interactions, suggesting that a major alteration is stabilization of an assembly competent form of the subunit. These mutations do not, however, have a major effect on the surface expression of heteromeric receptors which include the alpha1 subunit.  相似文献   

4.
An amino acid residue was found in M2 of gamma-aminobutyric acid (GABA) type A receptors that has profound effects on the binding of picrotoxin to the receptor and therefore may form part of its binding pocket. In addition, it strongly affects channel gating. The residue is located N-terminally to residues suggested so far to be important for channel gating. Point mutated alpha1beta(3) receptors were expressed in Xenopus oocytes and analyzed using the electrophysiological techniques. Coexpression of the alpha(1) subunit with the mutated beta(3) subunit beta(3)L253F led to spontaneous picrotoxin-sensitive currents in the absence of GABA. Nanomolar concentrations of GABA further promoted channel opening. Upon washout of picrotoxin, a huge transient inward current was observed. The reversal potential of the inward current was indicative of a chloride ion selectivity. The amplitude of the inward current was strongly dependent on the picrotoxin concentration and on the duration of its application. There was more than a 100-fold decrease in picrotoxin affinity. A kinetic model is presented that mimics the gating behavior of the mutant receptor. The point mutation in the neighboring residue beta(3)A252V resulted in receptors that displayed an about 6-fold increased apparent affinity to GABA and an about 10-fold reduced sensitivity to picrotoxin.  相似文献   

5.
Aspartokinase I and homoserine dehydrogenase I (AKI-HDI) from Serratia marcescens Sr41 are encoded by the thrA gene as a single polypeptide chain. Previously, a single amino acid substitution of Ser-352 with Phe was shown to produce an AKI-HDI enzyme that is not subject to threonine-mediated feedback inhibition. To determine the role of Ser-352 in the allosteric response, the thrA gene was modified by using site-directed mutagenesis so that Ser-352 of the wild-type AKI-HDI was replaced by Ala, Arg, Asn, Gln, Glu, His, Leu, Met, Pro, Thr, Trp, Tyr, or Val. The Thr-352 and Pro-352 replacements rendered AKIs sensitive to threonine. The Tyr-352 and Asn-352 substitutions led to activation, rather than inhibition, of AKI by threonine. The other replacements conferred threonine insensitivity on AKI. The threonine sensitivity of HDI was also changed by the amino acid substitutions at Ser-352. The HDI carried by the Tyr-352 mutant AKI-HDI was activated by threonine. Single amino acid replacements at Ser-352 by Ala, Asn, Gln, His, Phe, Pro, Thr, or Tyr were introduced into truncated AKI-HDIs containing the AKI and the central regions. The AKI activity of the truncated AKI-HDI containing the first 468 amino acid residues was sensitive to threonine, and introduction of the amino acid replacements did not alter the threonine sensitivity of the AKI. Another truncated AKI-HDI containing the first 462 amino acid residues possessed threonine-resistant AKI, whereas the substitutions of Ser-352 with Ala and Pro rendered AKI sensitive to threonine. The replacement of GIn-351 with Phe activated AK1 of the truncated AKI-HDI in the presence of L-threonine. These findings suggest that Ser-352 of the central region of AKI-HDI is possibly a key residue involved with the allosteric regulation of both AKI and HDI activities.  相似文献   

6.
L Yin  X Hu  D Xu  J Ning  J Chen  X Wang 《Metabolic engineering》2012,14(5):542-550
Threonine dehydratase and acetohydroxy acid synthase are critical enzymes in the l-isoleucine biosynthesis pathway of Corynebacterium glutamicum, but their activities are usually feedback-inhibited. In this study, we characterized a feedback-resistant threonine dehydratase and an acetohydroxy acid synthase from an l-isoleucine producing strain C. glutamicum JHI3-156. Sequence analysis showed that there was only a single amino acid substitution (Phe383Val) in the feedback-resistant threonine dehydratase, and there were three mutated amino acids (Pro176Ser, Asp426Glu, and Leu575Trp) in the big subunit of feedback-resistant acetohydroxy acid synthase. The mutated threonine dehydratase over-expressed in E. coli not only showed completely resistance to l-isoleucine inhibition, but also showed enhanced activity. The mutated acetohydroxy acid synthase over-expressed in E. coli showed more resistance to l-isoleucine inhibition than the wild type. Over-expression of the feedback-resistant threonine dehydratase or acetohydroxy acid synthase in C. glutamicum JHI3-156 led to increase of l-isoleucine production; co-expression of them in C. glutamicum JHI3-156 led to 131.7% increase in flask cultivation, and could produce 30.7g/L l-isoleucine in 72-h fed-batch fermentation. These results would be useful to enhance l-isoleucine production in C. glutamicum.  相似文献   

7.
The gamma-aminobutyric acid, type A (GABA(A)) receptor is a chloride-conducting receptor composed of alpha, beta, and gamma subunits assembled in a pentameric structure forming a central pore. Each subunit has a large extracellular agonist binding domain and four transmembrane domains (M1-M4), with the second transmembrane (M2) domain lining the pore. Mutation of five amino acids in the M1-M2 loop of the beta(3) subunit to the corresponding amino acids of the alpha(7) nicotinic acetylcholine subunit rendered the GABA(A) receptor cation-selective upon co-expression with wild type alpha(2) and gamma(2) subunits. Similar mutations in the alpha(2) or gamma(2) subunits did not lead to such a change in ion selectivity. This suggests a unique role for the beta(3) subunit in determining the ion selectivity of the GABA(A) receptor. The pharmacology of the mutated GABA(A) receptor is similar to that of the wild type receptor, with respect to muscimol binding, Zn(2+) and bicuculline sensitivity, flumazenil binding, and potentiation of GABA-evoked currents by diazepam. There was, however, an increase in GABA sensitivity (EC(50) = 1.3 microm) compared with the wild type receptor (EC(50) = 6.4 microm) and a loss of desensitization to GABA of the mutant receptor.  相似文献   

8.
A large cytoplasmic domain accounts for approximately one-third of the entire protein of one superfamily of ligand-gated membrane ion channels, which includes nicotinic acetylcholine (nACh), gamma-aminobutyric acid type A (GABA(A)), serotonin type 3 (5-HT3), and glycine receptors. Desensitization is one functional feature shared by these receptors. Because most molecular studies of receptor desensitization have focused on the agonist binding and channel pore domains, relatively little is known about the role of the large cytoplasmic domain (LCD) in this process. To address this issue, we sequentially deleted segments of the LCD of the 5-HT3A receptor and examined the function of the mutant receptors. Deletion of a small segment that contains three amino acid residues (425-427) significantly slowed the desensitization kinetics of the 5-HT3A receptor. Both deletion and point mutation of arginine 427 altered desensitization kinetics in a manner similar to that of the (425-427) deletion without significantly changing the apparent agonist affinity. The extent of receptor desensitization was positively correlated with the polarity of the amino acid residue at 427: the desensitization accelerates with increasing polarity. Whereas the R427L mutation produced the slowest desensitization, it did not significantly alter single channel conductance of 5-HT3A receptor. Thus, the arginine 427 residue in the LCD contributes to 5-HT3A receptor desensitization, possibly through forming an electrostatic interaction with its neighboring residues. Because the polarity of the amino acid residue at 427 is highly conserved, such a desensitization mechanism may occur in other members of the Cys-loop family of ligand-gated ion channels.  相似文献   

9.
We have attempted to identify amino acid residues of the yeast adenylyl cyclase that are involved in the regulation of its activity, by isolating adenylyl cyclase-linked spontaneous mutations capable of suppressing the temperature-sensitive phenotype of ras1- ras2-ts1 strains. We previously identified a mutated adenylyl cyclase in which a single point mutation, called CR14, led to the replacement of threonine 1651 with isoleucine. We have now investigated the biological effects of CR14, and of other mutations that cause the replacement of threonine 1651 by distinct amino acids. We have observed that the response of adenylyl cyclase to Ras can be either enhanced or attenuated, without significant effects on the steady-state level of the former enzyme in vivo, depending on the amino acid side chain at position 1651. Therefore, this residue identifies a regulatory region on the adenylyl cyclase molecule. We have also taken advantage of the attenuation of adenylyl cyclase function caused by the replacement of threonine 1651 with aspartic acid to isolate intragenic suppressor mutations. We have identified several point mutations, leading to single amino acid substitutions, individually capable of reactivating the attenuated adenylyl cyclase. The corresponding amino acid changes are located within a relatively small region, including residues 1331, 1345, 1348 and 1374. This region could be physiologically involved in the negative control of the carboxy-terminal catalytic domain.  相似文献   

10.
Using the substituted-cysteine-accessibility method, we previously showed that a cysteine residue introduced to the Y512 position of CLC-0 was more rapidly modified by a negatively charged methanethiosulfonate (MTS) reagent, 2-sulfonatoethyl MTS (MTSES), than by the positively charged 2-(trimethylammonium)ethyl MTS (MTSET). This result suggests that a positive intrinsic pore potential attracts the negatively charged MTS molecule. In this study, we further test this hypothesis of a positive pore potential in CLC-0 and find that the preference for the negatively charged MTS is diminished significantly in modifying the substituted cysteine at a deeper pore position, E166. To examine this conundrum, we study the rates of MTS inhibitions of the E166C current and those of the control mutant current from E166A. The results suggest that the inhibition of E166C by intracellularly applied MTS reagents is tainted by the modification of an endogenous cysteine, C229, located at the channel's dimer interface. After this endogenous cysteine is mutated, CLC-0 resumes its preference for selecting MTSES in modifying E166C, reconfirming the idea that the pore of CLC-0 is indeed built with a positive intrinsic potential. These experiments also reveal that MTS modification of C229 can inhibit the current of CLC-0 depending on the amino acid placed at position 166.  相似文献   

11.
12.
Molecular basis of mouse Himalayan mutation   总被引:9,自引:0,他引:9  
Many different coat-colors result from the c-locus mutation in the mouse. One of these interesting mutants is a Himalayan, which produces temperature sensitive tyrosinase, and the basis of this sensitivity remains unknown. We cultured Himalayan mouse melanocytes from the skin and constructed a cDNA library; then, we isolated the Himalayan tyrosinase cDNAs and determined the nucleotide sequence. The tyrosinase gene in the Himalayan mouse contains an A----G change at nucleotide 1259 that alters a histidine residue to an arginine residue at amino acid 420. This histidine residue and the surrounding amino acids are conserved in their evolution from mouse to human. Interestingly, the residue with its surrounding eight amino acids are aligned between mouse b-protein and human tyrosinase. These results indicate the possibility that the altered residue at amino acid 420 of mouse tyrosinase may be important in stabilization of the tyrosinase molecule, or in interaction with other molecules, such as tyrosinase inhibitors.  相似文献   

13.
K Imoto  T Konno  J Nakai  F Wang  M Mishina  S Numa 《FEBS letters》1991,289(2):193-200
The channel pore of the nicotinic acetylcholine receptor (AChR) has been investigated by analysing single-channel conductances of systematically mutated Torpedo receptors expressed in Xenopus oocytes. The mutations mainly alter the size and polarity of uncharged polar amino acid residues of the acetylcholine receptor subunits positioned between the cytoplasmic ring and the extracellular ring. From the results obtained, we conclude that a ring of uncharged polar residues comprising threonine 244 of the alpha-subunit (alpha T244), beta S250, gamma T253 and delta S258 (referred to as the central ring) and the anionic intermediate ring, which are adjacent to each other in the assumed alpha-helical configuration of the M2-containing transmembrane segment, together form a narrow channel constriction of short length, located close to the cytoplasmic side of the membrane. Our results also suggest that individual subunits, particularly the gamma-subunit, are asymmetrically positioned at the channel constriction.  相似文献   

14.
15.
The 5.24 odorant receptor is an amino acid sensing receptor that is expressed in the olfactory epithelium of fish. The 5.24 receptor is a G-protein-coupled receptor that shares amino acid sequence identity to mammalian pheromone receptors, the calcium-sensing receptor, the T1R taste receptors, and the metabotropic glutamate receptors (mGluRs). It is most potently activated by the basic amino acids L-lysine and L-arginine. In this study we generated a homology model of the ligand binding domain of the 5.24 receptor based on the crystal structure of mGluR1 and examined the proposed lysine binding pocket using site-directed mutagenesis. Mutants of truncated glycosylated versions of the receptor containing only the extracellular domain were analyzed in a radioligand binding assay, whereas the analogous full-length membrane-bound mutants were studied using a fluorescence-based functional assay. In silico analysis predicted that aspartate 388 interacts with the terminal amino group on the side chain of the docked lysine molecule. This prediction was supported by experimental observations demonstrating that mutation of this residue caused a 26-fold reduction in the affinity for L-lysine but virtually no change in the affinity for the polar amino acid L-glutamine. In addition, mutations in four highly conserved residues (threonine 175, tyrosine 223, and aspartates 195 and 309) predicted to establish interactions with the alpha amino group of the bound lysine ligand greatly reduced or eliminated binding and receptor activation. These results define the essential features of amino acid selectivity within the 5.24 receptor binding pocket and highlight an evolutionarily conserved motif required for ligand recognition in amino acid activated receptors in the G-protein-coupled receptor superfamily.  相似文献   

16.
Murine gamma-aminobutyric acid (GABA) type A homomeric receptors made of beta1 subunits are profoundly different, when expressed in Xenopus oocytes, from beta3 homomeric receptors. Application of the intravenous general anesthetic pentobarbital, etomidate, or propofol to beta3 homomeric receptors allows current flow. In contrast, beta1 homomers do not respond to any of these agents. Through construction of chimeric beta1/beta3 receptors, we identified a single amino acid that determines the pharmacological difference between the two beta subunits. When the serine residue present in the wild-type nonresponsive beta1 subunit is replaced by an asparagine found in the same position in the beta3 subunit, the resulting point-mutated beta1S265N forms receptors responsive to intravenous general anesthetics, like the wild-type beta3 subunits. Conversely, after mutation of the wild-type beta3 to beta3N265S, the homomeric receptor loses its ability to respond to these same general anesthetics. Wild-type-to-mutant titration experiments showed that the nonresponsive phenotype is dominant: A single nonresponsive residue within a pentameric receptor is sufficient to render the receptor nonresponsive. In alpha1betax or alpha1betaxgamma2 heteromeric receptors, the same residue manifests as a partial determinant of the degree of potentiation of the GABA-induced current by some general anesthetics. The location of this amino acid at the extracellular end of the second transmembrane segment, its influence in both homomeric and heteromeric receptor function, and its dominant behavior suggest that this residue of the beta subunit is involved in an allosteric modulation of the receptor.  相似文献   

17.
The v-erb A oncogene of avian erythroblastosis virus is a mutated and virally transduced copy of a host cell gene encoding a thyroid hormone receptor. The protein expressed by the v-erb A oncogene binds to DNA and acts as a dominant negative inhibitor of both the thyroid hormone receptor and the closely related retinoic acid receptor. The v-erb A protein has sustained two amino acid alterations within its DNA-binding domain relative to that of c-erb A, one of which, at serine 61, is known to be important for v-erb A function in the neoplastic cell. We report here that the second alteration, at threonine 78, also plays an important, although more indirect, role: alteration of the sequence at threonine 78 such that it resembles that of c-erb A can act as an intragenic suppressor and can partially restore function to a v-erb A protein rendered defective due to a mutation at position 61. Threonine 78 lies within the D-box of the v-erb A protein, a region thought to mediate receptor-receptor dimerizations, and is not in physical proximity to the serine at position 61. It therefore appears that an indirect interaction occurs between these two sites and that this interaction is crucial for v-erb A function.  相似文献   

18.
We deleted the two C-terminal residues of the scorpion toxin BmTx3, a peptidyl inhibitor of a transient A-type K(+) current in striatum neurons in culture, to assess their contribution to receptor recognition. The sBmTX3-delYP analog was shown to have a native-like structure in one-dimensional 1H-nuclear magnetic resonance (NMR) spectroscopy. We found that sBmTX3-delYP bound to its receptor less efficiently than the wild-type molecule (by a factor of about 10(5)) in binding assays with rat brain membranes, and that this molecule did not block the A-type K(+) current (at a concentration of 35 microM) in whole-cell patch clamp experiments with striatum neurons. Also, these results show that the A-type K(+) channel blocked by BmTX3 should have a canonical K(+) channel pore structure.  相似文献   

19.
Antithrombin III Hamilton is a structural variant of antithrombin III (AT-III) with normal heparin affinity but impaired serine protease inhibitory activity. The molecular defect of AT-III-Hamilton is a substitution of threonine for alanine at amino acid residue 382. Recently it has been shown that both plasma-derived and cell-free-derived AT-III-Hamilton polypeptides act as substrates rather than inhibitors of thrombin and factor Xa. In the present study, the cell-free expression phagemid vector pGEM-3Zf(+)-AT-III1-432 was mutated at amino acid residue 382 of AT-III to generate 7 cell-free-derived variants. All these cell-free-derived AT-III variants were able to bind heparin as effectively as cell-free-derived normal AT-III. In terms of alpha-thrombin inhibitory activity each variant reacted differently. Variants could be grouped into 3 categories with respect to thrombin-AT-III complex formation: (1) near normal activity (glycine, isoleucine, leucine, valine); (2) low activity (threonine, glutamine); (3) no detectable activity (lysine). These data suggest that mutations at position 382 of AT-III may have a variable effect on protease inhibitory activity, depending on either the stability of the P12-P9 region of the exposed loop of AT-III, or the inability of the amino acid residue at position 382 to interact with a conserved hydrophobic pocket consisting of phenylalanine (at positions 77, 221 and 422) and isoleucine (position 412) residues.  相似文献   

20.
Pa ID, a long-chain neurotoxin homologue, was isolated from the venom of an Australian elapid snake, Pseudechis australis, and its amino acid sequence was determined by conventional methods. Pa ID was an acidic protein (pI = 6.2) and consisted of 68 amino acid residues. It did not show binding activity to the acetylcholine receptor of an electric ray (Narke japonica) nor lethal effect on mice, though the amino acid sequence is homologous with those of long-chain neurotoxins isolated from other elapid snakes (homology, 39-51%). In the sequence of Pa ID, a structurally invariant residue (Tyr-22) and two functionally invariant residues (Val/Ala-49 and Lys/Arg-50) in snake venom neurotoxins are replaced by a cysteine, an arginine, and a methionine residue, respectively, and furthermore, four common residues in long-chain neurotoxins, Gly-17, Ala-43, Ser-59, and Phe/His-66 are replaced by a glutamic acid, a threonine, a threonine, and a valine residue, respectively. The conformational change of the protein molecule caused by these replacements and the removal of a positive charge at position 50 are probably the reasons why Pa ID has lost the lethality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号