首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The key parameters determining the elastic properties of an unidirectional mineralized bone fibril-array decomposed in two further hierarchical levels are investigated using mean field methods. Modeling of the elastic properties of mineralized micro- and nanostructures requires accurate information about the underlying topology and the constituents’ material properties. These input data are still afflicted by great uncertainties and their influence on computed elastic constants of a bone fibril-array remains unclear. In this work, mean field methods are applied to model mineralized fibrils, the extra-fibrillar matrix and the resulting fibril-array. The isotropic or transverse isotropic elastic constants of these constituents are computed as a function of degree of mineralization, mineral distribution between fibrils and extra-fibrillar matrix, collagen stiffness and fibril volume fraction. The linear sensitivity of the elastic constants was assessed at a default set of the above parameters. The strain ratios between the constituents as well as the axial and transverse indentation moduli of the fibril-array were calculated for comparison with experiments. Results indicate that the degree of mineralization and the collagen stiffness dominate fibril-array elasticity. Interestingly, the stiffness of the extra-fibrillar matrix has a strong influence on transverse and shear moduli of the fibril-array. The axial strain of the intra-fibrillar mineral platelets is 30–90% of the applied fibril strain, depending on mineralization and collagen stiffness. The fibril-to-fibril-array strain ratio is essentially ~1. This study provides an improved insight in the parameters, which govern the fibril-array stiffness of mineralized tissues such as bone.  相似文献   

2.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   

3.
Mineralized collagen fibrils are the basic building blocks of bone tissue at the supramolecular level. Several disease states, manipulation of the expression of specific proteins involved in biomineralization, and treatment with different agents alter the extent of mineralization as well as the morphology of mineral crystals which in turn affect the mechanical function of bone tissue. An experimental assessment of mineralized fibers' mechanical properties is challenged by their small size, leaving analytical and computational models as a viable alternative for investigation of the fibril-level mechanical properties. In the current study the variation of the elastic stiffness tensor of mineralized collagen fibrils with changing mineral volume fraction and mineral aspect ratios was predicted via a micromechanical model. The partitioning of applied stresses between mineral and collagen phases is also predicted for normal and shear loading of fibrils. Model predictions resulted in transversely isotropic collagen fibrils in which the modulus along the longer axis of the fibril was the greatest. All the elastic moduli increased with increasing mineral volume fraction whereas Poisson's ratios decreased with the exception of v12 (=v21). The partitioning of applied stresses were such that the stresses acting on mineral crystals were about 1.5, 15, and 3 times greater than collagen stresses when fibrils were loaded transversely, longitudinally, and in shear, respectively. In the overall the predictions were such that: (a) greatest modulus along longer axis; (b) the greatest mineral/collagen stress ratio along the longer axis of collagen fibers (i.e., greatest relief of stresses acting on collagen); and (c) minimal lateral contraction when fibers are loaded along the longer axis. Overall, the pattern of mineralization as put forth in this model predicts a superior mechanical function along the longer axis of collagen fibers, the direction which is more likely to experience greater stresses.  相似文献   

4.
Ideal biomaterials for bone grafts must be biocompatible, osteoconductive, osteoinductive and have appropriate mechanical properties. For this, the development of synthetic bone substitutes mimicking natural bone is desirable, but this requires controllable mineralization of the collagen matrix. In this study, densified collagen films (up to 100 μm thick) were fabricated by a plastic compression technique and cross-linked using carbodiimide. Then, collagen-hydroxyapatite composites were prepared by using a polymer-induced liquid-precursor (PILP) mineralization process. Compared to traditional methods that produce only extrafibrillar hydroxyapatite (HA) clusters on the surface of collagen scaffolds, by using the PILP mineralization process, homogeneous intra- and extrafibrillar minerals were achieved on densified collagen films, leading to a similar nanostructure as bone, and a woven microstructure analogous to woven bone. The role of collagen cross-links on mineralization was examined and it was found that the cross-linked collagen films stimulated the mineralization reaction, which in turn enhanced the mechanical properties (hardness and modulus). The highest value of hardness and elastic modulus was 0.7 ± 0.1 and 9.1 ± 1.4 GPa in the dry state, respectively, which is comparable to that of woven bone. In the wet state, the values were much lower (177 ± 31 and 8 ± 3 MPa) due to inherent microporosity in the films, but still comparable to those of woven bone in the same conditions. Mineralization of collagen films with controllable mineral content and good mechanical properties provide a biomimetic route toward the development of bone substitutes for the next generation of biomaterials. This work also provides insight into understanding the role of collagen fibrils on mineralization.  相似文献   

5.
Both elastic modulus and fracture stress are known to increase with the amount of mineral deposited within collagen fibrils. Current mechanical models of mineralized fibrils, where mineral platelets are arranged in parallel arrays, reproduce the first effect but fail to predict an increase in fracture stress. Here, we propose a model with a staggered array of platelets that is in better agreement with results on molecular packing in collagen fibrils and that accounts for an increase of both elastic modulus and fracture stress with the amount of mineral in the fibril. Finally, we explore the dependence of the mechanical properties within the model, when the degree of mineralization and the thickness of the platelets as well as their distance varies.  相似文献   

6.
Dentin and bone derive their mechanical properties from a complex arrangement of collagen type-I fibrils reinforced with nanocrystalline apatite mineral in extra- and intrafibrillar compartments. While mechanical properties have been determined for the bulk of the mineralized tissue, information on the mechanics of the individual fibril is limited. Here, atomic force microscopy was used on individual collagen fibrils to study structural and mechanical changes during acid etching. The characteristic 67 nm periodicity of gap zones was not observed on the mineralized fibril, but became apparent and increasingly pronounced with continuous demineralization. AFM-nanoindentation showed a decrease in modulus from 1.5 GPa to 50 MPa during acid etching of individual collagen fibrils and revealed that the modulus profile followed the axial periodicity. The nanomechanical data, Raman spectroscopy and SAXS support the hypothesis that intrafibrillar mineral etches at a substantially slower rate than the extrafibrillar mineral. These findings are relevant for understanding the biomechanics and design principles of calcified tissues derived from collagen matrices.  相似文献   

7.
At the ultrastructural observation scale of fully mineralized tissues (l=1-10 mum), transmission electron micrographs (TEM) reveal that hydroxyapatite (HA) is situated both within the fibrils and extrafibrillarly, and that the majority of HA lies outside the fibrils. The extrafibrillar amount of HA varies from tissue to tissue. By means of mathematical modeling, we here provide strong indications that there exists a physical quantity that is the same inside and outside the fibrils, for all different fully mineralized tissues. This quantity is the average mineral concentration in the non-collagenous space. This space is the sum of the extrafibrillar volume and of the volume of the fibrils that is not occupied by collagen molecules. Two independent sets of experimental observations covering a large range of tissue mass densities establish the relevance of our proposition: (i) mass density measurements and diffraction spacing measurements, re-analyzed through a dimensionally consistent packing model; (ii) optical density measurements of TEMs. The aforementioned average uniform HA-concentration in the extracollagenous space of the ultrastructure may emphasize the putative role played by a number of non-collagenous organic molecules in providing the chemical boundary conditions for mineralization of HA in the extracollagenous space. The probable existence of an average uniform extracollagenous HA concentration has far-reaching consequences for the mechanical behavior of mineralized tissues.  相似文献   

8.
There is an ongoing discussion on how bone strength could be explained from its internal structure and composition. Reviewing recent experimental and molecular dynamics studies, we here propose a new vision on bone material failure: mutual ductile sliding of hydroxyapatite mineral crystals along layered water films is followed by rupture of collagen crosslinks. In order to cast this vision into a mathematical form, a multiscale continuum micromechanics theory for upscaling of elastoplastic properties is developed, based on the concept of concentration and influence tensors for eigenstressed microheterogeneous materials. The model reflects bone's hierarchical organization, in terms of representative volume elements for cortical bone, for extravascular and extracellular bone material, for mineralized fibrils and the extrafibrillar space, and for wet collagen. In order to get access to the stress states at the interfaces between crystals, the extrafibrillar mineral is resolved into an infinite amount of cylindrical material phases oriented in all directions in space. The multiscale micromechanics model is shown to be able to satisfactorily predict the strength characteristics of different bones from different species, on the basis of their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and vascular porosities, and the elastic and strength properties of hydroxyapatite and (molecular) collagen.  相似文献   

9.
Ultrastructural data from x-ray diffraction studies of the cornea were used to estimate the refractive indices of the collagen fibrils and extrafibrillar material of human, ox, trout, and rabbit corneas. X-ray diffraction measurements of the size and spacing of the collagen fibrils and the separation between the constituent molecules of the fibrils were taken from a previous species study. The tissue volume fractions occupied by the stromal components were estimated and their refractive indices were calculated using the Gladstone-Dale law of mixtures. For the fibrils and extrafibrillar material, the refractive indices in the human cornea were 1.411 and 1.365; for the ox 1.413 and 1.357; for the rabbit 1.416 and 1.357; and for the trout 1.418 and 1.364, respectively. An alternative estimate based on the physical properties and chemical composition of bovine cornea, accounting for interfibrillar type VI collagen and cellular water, produced similar estimates of 1.416 and 1.356 for the fibrils and extrafibrillar material, respectively.  相似文献   

10.
Extracellular matrix organization and the spatial relationship between collagen fibrils, vesicular structures, and the first deposits of mineral in the calcifying leg tendon from the domestic turkey, Meleagris gallopavo, have been investigated by high voltage electron microscopy and three-dimensional computer graphic imaging of serial thick tissue sections. The work demonstrates that the tendon extracellular matrix is a complex assembly of somewhat flexible, highly aligned collagen fibrils with different diameters and occasionally opposite directionality. Smaller collagen fibrils appear to branch from larger fibrils or to aggregate to form those of greater size. While the matrices are dominated by fibrils, space exists between adjacent packed fibrils. The three-dimensional perspective indicates that approximately 60% of the total tendon volume is extrafibrillar over the regions examined. The first observable mineral in this tissue is extrafibrillar and appears to derive from vesicles. This view of three-dimensional matrix-mineral spatial relations supports earlier two-dimensional results that mineral is initially associated with membrane-invested vesicles and is deposited between collagen fibrils, but it is distinct in showing the mineral at different depths in the matrix rather than at a single depth as deduced from two-dimensional conventional electron microscopy. These results are important in the onset and development of tendon calcification in that they suggest, first, that collagen fibrils appear to be aligned three-dimensionally such that their hole zones are in contiguous arrangement. This situation may create channels or grooves within the collagen volume to accommodate extensive mineral deposition in association with the fibrils. Second, the results indicate that there are widely dispersed sites of vesicle-mediated mineralization in the tendon matrix, that the bulk of mineralization in this tissue is collagen-mediated, and that, while vesicles may possibly exert some local influence temporally on mineralization of neighboring collagen, vesicle- and collagen-mediated mineralization arise at spatially and structurally distinct sites by independent nucleation phenomena. Such concepts are fundamental in considerations of possible mechanisms of mineralization of tendon and potentially of other normally calcifying vertebrate tissues in general.  相似文献   

11.
Extracellular bone material can be characterised as a nanocomposite where, in a liquid environment, nanometre-sized hydroxyapatite crystals precipitate within as well as between long fibre-like collagen fibrils (with diameters in the 100 nm range), as evidenced from neutron diffraction and transmission electron microscopy. Accordingly, these crystals are referred to as ‘interfibrillar mineral’ and ‘extrafibrillar mineral’, respectively. From a topological viewpoint, it is probable that the mineralisations start on the surfaces of the collagen fibrils (‘mineral-encrusted fibrils’), from where the crystals grow both into the fibril and into the extrafibrillar space. Since the mineral concentration depends on the pore spaces within the fibrils and between the fibrils (there is more space between them), the majority of the crystals (but clearly not all of them) typically lie in the extrafibrillar space. There, larger crystal agglomerations or clusters, spanning tens to hundreds of nanometers, develop in the course of mineralisation, and the micromechanics community has identified the pivotal role, which this extrafibrillar mineral plays for tissue elasticity. In such extrafibrillar crystal agglomerates, single crystals are stuck together, their surfaces being covered with very thin water layers. Recently, the latter have caught our interest regarding strength properties (Fritsch et al. 2009 J Theor Biol. 260(2): 230–252) – we have identified these water layers as weak interfaces in the extrafibrillar mineral of bone. Rate-independent gliding effects of crystals along the aforementioned interfaces, once an elastic threshold is surpassed, can be related to overall elastoplastic material behaviour of the hierarchical material ‘bone’. Extending this idea, the present paper is devoted to viscous gliding along these interfaces, expressing itself, at the macroscale, in the well-known experimentally evidenced phenomenon of bone viscoelasticity. In this context, a multiscale homogenisation scheme is extended to viscoelasticity, mineral-cluster-specific creep parameters are identified from three-point bending tests on hydrated bone samples, and the model is validated by statistically and physically independent experiments on partially dried samples. We expect this model to be relevant when it comes to prediction of time-dependent phenomena, e.g. in the context of bone remodelling.  相似文献   

12.
The leg tendons of certain avian species normally calcify. The gastrocnemius, or Achilles, tendon of the domestic turkey, Meleagris gallopavo, is one such example. Its structure and biomechanical properties have been studied to model the adaptive nature of this tendon to external forces, including the means by which mineral deposition occurs and the functional role mineralization may play in this tissue. Structurally, the distal rounded, thick gastrocnemius bifurcates into two smaller proximal segments that mineralize with time. Mineral deposition occurs at or near the bifurcation, proceeding in a distal-to-proximal direction along the segments toward caudal and medial muscle insertions of the bird hip. Mineral formation appears mediated first by extracellular matrix vesicles and later by type I collagen fibrils. Biomechanical analyses indicate lower tensile strength and moduli for the thick distal gastrocnemius compared to narrow, fan-shaped proximal segments. Tendon mineralization here appears to be strain-induced, the muscle forces causing matrix deformation leading conceptually to calcium binding through the exposure of charged groups on collagen, release of sequestered calcium by proteoglycans, and increased diffusion. Functionally, the mineralized tendons limit further tendon deformation, reduce tendon strain at a given stress, and provide greater load-bearing capacity to the tissue. They also serve as important and efficient elastic energy storage reservoirs, increasing the amount of stored elastic energy by preventing flexible type I collagen regions from stretching and preserving muscle energy during locomotion of the animals.  相似文献   

13.
Lees S 《Biophysical journal》2003,85(1):204-207
It was previously found that the lateral spacing of the collagen molecules in wet mineralized tissues is exactly proportional to the inverse wet density. Several properties were investigated and the same type of relationship was observed each time. A possible explanation is offered. It is hypothesized that mineral is deposited initially in the extrafibrillar space so as to isolate the fibrils. Further deposition reduces the net free fibril volume thereby decreasing the spacing between collagen molecules. The linear relationship is derived from density considerations together with limitations on the collagen packing structure described as the generalized packing model. Three experimental situations were studied: lateral spacing wet tissue versus density; lateral spacing dry tissue versus density; and lateral spacing versus water content. The observed variations of the spacing can be attributed to a structure where the mass of the tissue remains constant but the volume decreases linearly with increasing mineral content.  相似文献   

14.
Neutron diffraction studies of mineralized tissue show a close relationship between the wet state equatorial diffraction spacing and wet tissue density expressable as a second-order polynomial. The molecular fractional shrinkage when the tissue is dried shows a straight line dependence on wet tissue density with a correlation of 0.98. Since the dry state equatorial diffraction spacing is much less than for the corresponding wet state, even in fully mineralized bone, the collagen molecules must be displaced through a mineral-free volume while drying. The mineral can only be located within the available volume of the dried tissue whether intra- or extrafibrillar. The dimension of the dry state equatorial spacing for each of the tissues examined is close to that of dried tendon collagen. It appears unlikely that hydroxyapatite crystallites can be accommodated radially between collagen molecules in bone if the packing is like that of dried tail tendon collagen. The only mineral within the fibrils must be in the intermolecular gaps. It is estimated on the basis of the volume of the axial intermolecular gaps and the minimum extrafibrillar volume that the intrafibrillar mineral can be no more than 20% of the total mineral and may be less than 10%.  相似文献   

15.
B Zimmermann 《Acta anatomica》1992,145(3):277-282
Mineralization at collagen fibrils is regulated by glycosaminoglycans (GAG). Alterations in proteoglycan composition during mineralization as well as inhibition of mineralization by GAGs are well documented. Collagen-GAG interactions during desmoid osteogenesis in fetal rat calvariae were investigated ultrastructurally by means of different fixation techniques. Mineralization was restricted to the collagen of the osteoid at the ectocranial side. Beyond the osteoid, one layer containing degenerated cells was found, followed by sheets of healthy osteoblasts with nonmineralized collagen fibrils. These fibrils were ordered in bundles, but were irregularly arranged in the mineralized osteoid. After fixation in glutaraldehyde-ruthenium red (GA-RR), small RR-positive granules were periodically attached to the fibrils of the nonmineralized collagen. These granules were absent at collagen in the mineralized osteoid. Periodically bound granules (periodicity of 62 nm) could clearly be demonstrated along collagen fibrils by pretreatment with the positively charged protamine sulfate and subsequent fixation in GA-RR in the nonmineralized collagen. In the mineralized osteoid, however, these granules were present, but periodic binding was missing. Heparin pretreatment followed by fixation in GA-RR revealed periodically bound fine strands between collagen fibrils running parallel in the nonmineralized collagen; these threads were absent in the mineralizing osteoid. Restriction of mineralization to osteoid at the mineralization border may be reflected by the observed changes in GAG binding to collagen fibrils within the osteoid of developing fetal calvariae in contrast to binding to collagen in nonmineralized areas.  相似文献   

16.
It has been reported that the Mg-insufficient bone is fragile upon mechanical loading, despite its high bone mineral density, while vitamin K2 (MK-4: menatetrenone) improved the mechanical strength of Mg-insufficient bone. Therefore, we aimed to elucidate the ultrastructural properties of bone in rats with dietary Mg insufficiency with and without MK-4 supplementation. Morphological examinations including histochemistry, transmission electron microscopy, electron probe microanalysis (EPMA) and X-ray diffraction were conducted on the femora and tibiae of 4-week-old Wistar male rats fed with 1) a normal diet (control group, 0.09% Mg), 2) a Mg-insufficient diet (low Mg group, 0.006% Mg), or 3) a Mg-insufficient diet supplemented with MK-4 (MK-4 group, 0.006% Mg, 0.03% MK-4). MK-4 appeared to inhibit the osteoclastic bone resorption that is stimulated by Mg insufficiency. EPMA analysis, however, revealed an increased concentration of Ca paralleling Mg reduction in the low Mg group. Assessment by X-ray diffraction revealed an abundance of a particular synthetic form of hydroxyapatite in the low Mg group, while control bones featured a variety of mineralized crystals. In addition, Mg-deficient bones featured larger mineral crystals, i.e., crystal overgrowth. This crystalline aberration in Mg-insufficient bones induced collagen fibrils to mineralize easily, even in the absence of mineralized nodules, which therefore led to an early collapse of the fibrils. MK-4 prevented premature collagen mineralization by normalizing the association of collagen fibrils with mineralized nodules. Thus, MK-4 appears to rescue the impaired collagen mineralization caused by Mg insufficiency by promoting a re-association of the process of collagen mineralization with mineralized nodules.  相似文献   

17.
In order to understand further the mechanism of bone fracture repair, and thus to innovate better operative treatment for bone fracture and to design new implant materials for bone repair, microstructures of external periosteal callus (EPC) of repaired femoral fracture in both children and adults were investigated by using a scanning electron microscope, transmission electron microscopy, and an X-ray microdiffractometer. The repair time after the fractures in children and adults is on average 155 and 370 days, respectively. Collagen fibrils making up children's EPC (CEPC) are underdeveloped and insufficiently mineralized by hydroxyapatite (HA), while those from adults' EPC (AEPC) are similar to normal bone. A lot of particles loaded by brushite (DCPD) minerals were found among the collagen fibrils of CEPC. The main mineral phases in CEPC consist of DCPD and HA, while only HA exists in AEPC. Deposition of DCPD minerals could have compensated for the insufficient mineralization of the collagen fibrils of CEPC, thereby making fractured bone repair more rapidly in children than in adults.  相似文献   

18.
Dentin Matrix Protein 1 (DMP1), the essential noncollagenous proteins in dentin and bone, is believed to play an important role in the mineralization of these tissues, although the mechanisms of its action are not fully understood. To gain insight into DMP1 functions in dentin mineralization we have performed immunomapping of DMP1 in fully mineralized rat incisors and in vitro calcium phosphate mineralization experiments in the presence of DMP1. DMP1 immunofluorescene was localized in peritubular dentin (PTD) and along the dentin-enamel boundary. In vitro phosphorylated DMP1 induced the formation of parallel arrays of crystallites with their c-axes co-aligned. Such crystalline arrangement is a hallmark of mineralized collagen fibrils of bone and dentin. Interestingly, in DMP1-rich PTD, which lacks collagen fibrils, the crystals are organized in a similar manner. Based on our findings we hypothesize, that in vivo DMP1 controls the mineral organization outside of the collagen fibrils and plays a major role in the mineralization of PTD.  相似文献   

19.
During bone and dentin mineralization, the crystal nucleation and growth processes are considered to be matrix regulated. Osteoblasts and odontoblasts synthesize a polymeric collagenous matrix, which forms a template for apatite initiation and elongation. Coordinated and controlled reaction between type I collagen and bone/dentin-specific noncollagenous proteins are necessary for well defined biogenic crystal formation. However, the process by which collagen surfaces become mineralized is not understood. Dentin matrix protein 1 (DMP1) is an acidic noncollagenous protein expressed during the initial stages of mineralized matrix formation in bone and dentin. Here we show that DMP1 bound specifically to type I collagen, with the binding region located at the N-telopeptide region of type I collagen. Peptide mapping identified two acidic clusters in DMP1 responsible for interacting with type I collagen. The collagen binding property of these domains was further confirmed by site-directed mutagenesis. Transmission electron microscopy analyses have localized DMP1 in the gap region of the collagen fibrils. Fibrillogenesis assays further demonstrated that DMP1 accelerated the assembly of the collagen fibrils in vitro and also increased the diameter of the reconstituted collagen fibrils. In vitro mineralization studies in the presence of calcium and phosphate ions demonstrated apatite deposition only at the collagen-bound DMP1 sites. Thus specific binding of DMP1 and possibly other noncollagenous proteins on the collagen fibril might be a key step in collagen matrix organization and mineralization.  相似文献   

20.
Collagen tryptic peptides obtained from the nonmineralized and mineralized compartments of diaphyseal bone have different distributions of intermolecular crosslinks. Pyridinoline, a collagen crosslink thought to be associated with chronologically older bone, was detected in peptides from normineralized collagen but not from mineralized collagen. Mineralization may prevent collagen maturation; conversely, pyridinoline in nonmineralized collagen may decrease the intermolecular distances among collagen chains in fibrils and preclude mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号