首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
K Adzuma  K Mizuuchi 《Cell》1988,53(2):257-266
A DNA molecule carrying Mu end DNA sequence(s) is a poor target in the Mu DNA strand-transfer reaction, a phenomenon which is referred to as "target immunity." We find that Mu B protein stimulates intermolecular strand-transfer by binding to the target DNA. Our results show that a differential distribution of Mu B protein between "immune" and "non-immune" DNA molecules is responsible for target immunity; in the presence of Mu A protein and ATP, Mu B protein dissociates preferentially from immune DNA molecules. Hydrolysis of ATP is implicated in establishing the differential distribution of Mu B protein between immune and non-immune DNA molecules in the presence of Mu A protein; nonhydrolyzable ATP gamma S can support an efficient strand-transfer reaction even with a target DNA that is immune in a reaction with ATP.  相似文献   

2.
We have analyzed the ATPase activity exhibited by the UvrABC DNA repair complex. The UvrA protein is an ATPase whose lack of DNA dependence may be related to the ATP induced monomer-dimer transitions. ATP induced dimerization may be responsible for the enhanced DNA binding activity observed in the presence of ATP. Although the UvrA ATPase is not stimulated by dsDNA, such DNA can modulate the UvrA ATPase activity by decreases in Km and Vm and alterations in the Ki for ADP and ATP-gamma-S. The induction of such changes upon binding to DNA may be necessary for cooperative interactions of UvrA with UvrB that result in a DNA stimulated ATPase for the UvrAB protein complex. The UvrAB ATPase displays unique kinetic profiles that are dependent on the structure of the DNA effector. These kinetic changes correlate with changes in footprinting patterns, the stabilization of protein complexes on DNA damage and with the expression of helicase activity.  相似文献   

3.
Interactions between the Mu A and Mu B proteins are important in the early steps of the in vitro transposition of a mini-Mu plasmid. We have examined these interactions by assaying Mu B stimulation of Mu A-mediated strand cleavage and strand transfer reactions. We have previously shown that in the presence of ATP the Mu B protein can stimulate the Mu A-directed cleavage reaction of mini-Mu plasmids carrying a terminal base pair mutation (Surette, M.G., Harkness, T., and Chaconas, G. (1991) J. Biol. Chem. 266, 3118-3124). Here we demonstrate that in the absence of a non-Mu DNA target molecule the Mu B protein stimulates intramolecular integration of a mini-Mu in an ATP-dependent fashion. Furthermore, modification of the Mu B protein with N-ethylmaleimide severely compromises the ability of B to form a stable complex with DNA; however, the modified protein stimulates the strand cleavage and intramolecular strand transfer reactions as efficiently as the untreated protein. These results indicate that the Mu B protein is capable of stimulating the Mu A protein through direct interaction in the absence of stable Mu B-DNA complex formation. Our results increase the spectrum of Mu B protein activities and uncouple the stimulatory properties of the Mu B protein from stable DNA binding but not the ATP cofactor requirement.  相似文献   

4.
M Mizuuchi  K Mizuuchi 《Cell》1989,58(2):399-408
Phage Mu transposition is initiated by the Mu DNA strand-transfer reaction, which generates a branched DNA structure that acts as a transposition intermediate. A critical step in this reaction is formation of a special synaptic DNA-protein complex called a plectosome. We find that formation of this complex involves, in addition to a pair of Mu end sequences, a third cis-acting sequence element, the internal activation sequence (IAS). The IAS is specifically recognized by the N-terminal domain of Mu transposase (MuA protein). Neither the N-terminal domain of MuA protein nor the IAS is required for later reaction steps. The IAS overlaps with the sequences to which Mu repressor protein binds in the Mu operator region; the Mu repressor directly inhibits the Mu DNA strand-transfer reaction by interfering with the interaction between MuA protein and the IAS, providing an additional mode of regulation by the repressor.  相似文献   

5.
Double-stranded DNA packaging in icosahedral bacteriophages is driven by an ATPase-coupled packaging machine constituted by the portal protein and two non-structural packaging/terminase proteins assembled at the unique portal vertex of the empty viral capsid. Recent studies show that the N-terminal ATPase site of bacteriophage T4 large terminase protein gp17 is critically required for DNA packaging. It is likely that this is the DNA translocating ATPase that powers directional translocation of DNA into the viral capsid. Defining this ATPase center is therefore fundamentally important to understand the mechanism of ATP-driven DNA translocation in viruses. Using combinatorial mutagenesis and biochemical approaches, we have defined the catalytic carboxylate residue that is required for ATP hydrolysis. Although the original catalytic carboxylate hypothesis suggested the presence of a catalytic glutamate between the Walker A (SRQLGKT(161-167)) and Walker B (MIYID(251-255)) motifs, none of the four candidate glutamic acid residues, E198, E208, E220 and E227, is required for function. However, the E256 residue that is immediately adjacent to the putative Walker B aspartic acid residue (D255) exhibited a phenotypic pattern that is consistent with the catalytic carboxylate function. None of the amino acid substitutions, including the highly conservative D and Q, was tolerated. Biochemical analyses showed that the purified E256V, D, and Q mutant gp17s exhibited a complete loss of gp16-stimulated ATPase activity and in vitro DNA packaging activity, whereas their ATP binding and DNA cleavage functions remained intact. The data suggest that the E256 mutants are trapped in an ATP-bound conformation and are unable to catalyze the ATP hydrolysis-transduction cycle that powers DNA translocation. Thus, this study for the first time identified and characterized a catalytic glutamate residue that is involved in the energy transduction mechanism of a viral DNA packaging machine.  相似文献   

6.
K Adzuma  K Mizuuchi 《Cell》1989,57(1):41-47
DNA molecules carrying a Mu end(s) are inefficient targets in the Mu DNA strand-transfer reaction. This target immunity is due to preferential dissociation of Mu B protein from DNA molecules that have Mu A protein bound to the Mu end; free DNA is a much poorer target than DNA with Mu B protein bound. We show that Mu B protein, which binds nonspecifically to DNA, is immobile once bound. An encounter between Mu A and Mu B proteins, bound some distance apart along DNA, is necessary to facilitate the Mu B dissociation. Experiments which show that DNA without a Mu end can acquire immunity, by catenation to DNA with a Mu end(s), are consistent with a model of Mu A-Mu B interaction by DNA looping, but not by linear movement of protein(s) along DNA.  相似文献   

7.
The non-structural (NS) proteins of parvoviruses are involved in essential steps of the viral life cycle. Various biochemical functions, such as ATP binding, ATPase, site-specific DNA binding and nicking, and helicase activities, have been assigned to the protein NS1. Compared with the non-structural proteins of the vertebrate parvoviruses, the NS proteins of the Densovirinae have not been well characterized. Here, we describe the biochemical properties of NS1 of Periplaneta fuliginosa densovirus (PfDNV). We have expressed and purified NS1 using a baculovirus system and analyzed its enzymatic activity. The purified recombinant NS1 protein possesses ATPase- and ATP- or dATP-dependent helicase activity requiring either Mg(2+) or Mn(2+) as a cofactor. The ATPase activity of NS1 can be efficiently stimulated by single-stranded DNA. The ATPase coupled helicase activity was detected on blunt-ended double-stranded oligonucleotide substrate. Using South-Western and Dot-spot assays, we identified a DNA fragment that is recognized specifically by the recombinant NS1 protein. The fragment consists of (CAC)(4) and is located on the hairpin region of the terminal palindrome. The domain for DNA binding was defined to the amino-terminal region (amino acids 1-250). In addition, we found that NS1 can form oligomeric complexes in vivo and in vitro. Mutagenesis analysis showed that ATP binding is necessary for oligomerization. Based on these results, it seems that PfDNV NS1, a multifunctional protein, plays an important role in viral DNA replication comparable to those of vertebrate parvovirus initiator proteins.  相似文献   

8.
The DNA dependence of the ATPase activity of DNA gyrase   总被引:20,自引:0,他引:20  
We have studied the ATPase activity of DNA gyrase both in the absence and presence of DNA. In the absence of DNA we show that the gyrase B protein alone has a very low level of ATPase activity which can be increased many-fold by pretreatment of the B protein with heat or urea. When both the gyrase A protein and linear DNA are also present, the ATPase activity of the untreated B protein is greatly stimulated. We find that the extent of stimulation is dependent upon the length of the DNA but largely independent of DNA sequence. DNA molecules greater than 100 base pairs in length are much more effective in stimulating the gyrase ATPase than those of 70 base pairs or less, although short DNA molecules will stimulate the ATPase at high concentrations. The behavior of long and short DNA molecules with respect to ATPase stimulation is also reflected in their abilities to bind DNA gyrase. To account for these data we propose a model for the interaction of gyrase with ATP and DNA in which ATP hydrolysis requires the binding of DNA to two sites on the enzyme.  相似文献   

9.
M G Surette  S J Buch  G Chaconas 《Cell》1987,49(2):253-262
We report that two types of stable protein-DNA complexes, or transpososomes, are generated in vitro during the Mu DNA strand transfer reaction. The Type 1 complex is an intermediate in the reaction. Its formation requires a supercoiled mini-Mu donor plasmid, Mu A and HU protein, and Mg2+. In the Type 1 complex the two ends of Mu are held together, creating a figure eight-shaped molecule with two independent topological domains; the Mu sequences remain supercoiled while the vector DNA is relaxed because of nicking. In the presence of Mu B protein, ATP, target DNA, and Mg2+, the Type 1 complex is converted into the protein-associated product of the strand transfer reaction. In this Type 2 complex, the target DNA has been joined to the Mu DNA ends held in the synaptic complex at the center of the figure eight. Supercoils are not required for the latter reaction.  相似文献   

10.
DNA packaging in tailed bacteriophages and herpesviruses requires assembly of a complex molecular machine at a specific vertex of a preformed procapsid. As in all these viruses, the DNA translocation motor of bacteriophage SPP1 is composed of the portal protein (gp6) that provides a tunnel for DNA entry into the procapsid and of the viral ATPase (gp1-gp2 complex) that fuels DNA translocation. Here we studied the cross-talk between the components of the motor to control its ATP consumption and DNA encapsidation. We showed that gp6 embedded in the procapsid structure stimulated more than 10-fold the gp2 ATPase activity. This stimulation, which was significantly higher than the one conferred by isolated gp6, depended on the presence of gp1. Mutations in different regions of gp6 abolished or decreased the gp6-induced stimulation of the ATPase. This effect on gp2 activity was observed both in the presence and in the absence of DNA and showed a strict correlation with the efficiency of DNA packaging into procapsids containing the mutant portals. Our results demonstrated that the portal protein has an active control over the viral ATPase activity that correlates with the performance of the DNA packaging motor.  相似文献   

11.
12.
Summary The SopA, B, C genes of the F plasmid play an essential role in plasmid partitioning during cell division in Escherichia coli. In this paper, the products of the sopA and sopB genes were isolated and their biochemical activities studied. [-32P]ATP was cross-linked to the SopA protein by UV irradiation; this cross-linking was observed only in the presence of magnesium ion, and was competitively inhibited in the presence of non-radioactive ATP, ADP and dATP, but not other NTPs or dNTPs. In contrast, no ATP binding activity was detected for the SopB protein. The SopA protein showed a modest magnesium ion-dependent ATPase activity and this activity was stimulated in the presence of DNA. The ATPase activity in the presence of DNA was further stimulated by addition of the SopB protein. However, the SopB protein alone failed to stimulate the ATPase activity.  相似文献   

13.
Two mutations within the transposase (the A protein) gene of phage Mu with distinct effects on DNA transposition have been studied. The first mutation maps to the central domain (domain II) of A, a protein consisting of three major structural domains. The variant protein is normal in synapsis and cleavage of Mu ends but is temperature-sensitive in the strand transfer reaction, joining the Mu ends to target DNA. The second mutation is a deletion at the C terminus (within domain III); on the basis of genetic studies, the mutant protein is predicted to have lost the ability to interact with the Mu B protein. The B protein, in conjunction with A, promotes efficient intermolecular transposition, while inhibiting intramolecular transposition. We show that the purified mutant protein is proficient in intramolecular, but not intermolecular transposition in vitro. The interactions between A and B proteins have been followed by a proteolysis assay. The chymotrypsin sensitivity of the interdomainal Phe221-Ser222 peptide bond within the bidomainally organized B protein is exquisitely modulated by ATP, DNA and A protein. The sensitive or "open" state of this bond in native B protein becomes partially "open" upon binding of ATP by B, attains a "closed" or resistant configuration upon binding of DNA in presence of ATP, and is rendered "open" again upon addition of the A protein. In this test for the interaction of A protein with B protein-DNA complex, the domain II mutant behaves like wild-type A protein. However, the domain III mutant fails to restore chymotrypsin susceptibility of the Phe221-Ser222 bond.  相似文献   

14.
The B-protein of phage Mu, which is required for high frequency intermolecular transposition in vivo, shows ATPase activity in vitro, binds nonspecifically to DNA, and stimulates intermolecular strand transfer. To elucidate the structural bases for B-protein function, it was subjected to limited proteolysis with two different proteases, trypsin and chymotrypsin. The resulting fragments were mapped by amino acid sequencing. These data show that the B-protein is organized in two domains: an amino-terminal domain of 25 kDa and a carboxyl-terminal domain of 8-kDa. A fragment analogous to the amino-terminal domain, produced by deleting the 3' end of a cloned B gene, proved to be insoluble and had to be renatured after elution from a sodium dodecyl sulfate gel. The renatured protein retains ATP-binding activity and to a lesser extent the DNA-binding activity of the MuB protein, but is unable to hydrolyze ATP or function in transposition. We also show in this study that efficient DNA-strand transfer by the B-protein occurs even in the absence of a detectable ATPase activity or in the presence of adenosine 5'-O-(thio)triphosphate (ATP gamma S).  相似文献   

15.
FliI ATPase forms a homo-hexamer to fully exert its ATPase activity, facilitating bacterial flagellar protein export. However, it remains unknown how FliI hexamerization is linked to protein export. Here, we analyzed the capability of ring formation by FliI and its catalytic mutant variants. Compared to ATP a non-hydrolysable ATP analog increased the probability of FliI hexamerization. In contrast, FliI(E221Q), which retained the affinity for ATP but has lost ATPase activity, efficiently formed the hexamer even in the presence of ATP. The mutations, which reduced the binding affinity for ATP, significantly abolished the ring formation. These results indicate that ATP-binding induces FliI hexamerization and that the release of ADP and Pi destabilizes the ring structure. FliI(E221Q) facilitated flagellar protein export in the absence of the FliH regulator of the export apparatus although not at the wild-type FliI level while the other did not. We propose that FliI couples ATP binding and hydrolysis to its assembly-disassembly cycle to efficiently initiate the flagellar protein export cycle.  相似文献   

16.
In this paper we report a detailed enzymatic characterization of the interaction of the polymerase accessory protein complex of the T4 DNA replication system with the various nucleic acid cofactors that activate the ATPase of the complex. We show that the ATPase activity of the T4 coded gene 44/62 protein complex is stimulated synergistically by binding of DNA and T4 gene 45 protein and that the level of ATPase activation appears to be directly correlated with the binding of nucleic acid cofactor. Binding of any partially or completely single-stranded DNA to the complete accessory protein complex increases the catalytic activity (as measured by Vmax) while decreasing the binding affinity for the ATP substrate. While single-stranded DNA is a moderately effective cofactor, we find that the optimal nucleic acid-binding site for the complex is the primer-template junction, rather than single-stranded DNA ends as previously reported in the literature. Gene 45 protein plays an essential role in directing the specificity of binding to primer-template sites, lowering the Km for primer-template sites almost 1000-fold, and increasing Vmax 100-fold, compared with the analogous values for gene 44/62 protein alone. The most effective primer-template site for binding and enzymatic activation has the physiologically relevant recessed 3'-OH configuration and an optimal size in excess of 18 base pairs of duplex DNA. We find that the chemical nature of the primer terminus (i.e. 3'-OH or 3'-H) does not affect the extent of ATPase activation and that binding of the polymerase accessory protein complex to DNA cofactors is salt concentration dependent but appreciably less so when the activating DNA is a primer-template junction. Finally, we show that the gene 32 protein (T4 coded single-stranded DNA-binding protein) can compete with the polymerase accessory protein complex for single-stranded DNA but not for the primer-template junction activation sites. The implications of these results for the structure and function of the polymerase accessory protein complex within the T4 DNA replication system are discussed.  相似文献   

17.
Stable protein-DNA complexes or transpososomes mediate the Mu DNA strand transfer reaction in vitro (Surette, M. G., Buch, S. J., and Chaconas, G. (1987) Cell 49, 253-262; Craigie, R., and Mizuuchi, K. (1987) Cell 51, 493-501). Formation of the Type 1 complex, an intermediate in the strand transfer reaction, requires the Mu A and Escherichia coli HU proteins. Generation of the Type 2 complex, in which the Mu ends have been covalently linked to the target DNA, requires the Mu B protein, ATP, and target DNA in addition to A and HU. The protein content of these higher order synaptic complexes has been studied by immunoelectron microscopy using protein A-colloidal gold conjugates to visualize antibody-bound complexes. Under our in vitro transposition conditions, Type 1 complexes were found to contain A and HU; in addition, Type 2 complexes contained Mu B. However, both the HU and the Mu B protein were found to be loosely associated and could be quantitatively removed from the nucleoprotein core of both complexes by incubation in 0.5 M NaCl. Depletion of HU from the Type 1 complex did not affect the ability of this complex to be converted into the strand-transferred product. Hence, the indispensable role of the HU protein in the Mu DNA strand transfer reaction is limited to the formation of the Type 1 transpososome.  相似文献   

18.
C A O'Brian  N E Ward 《Biochemistry》1991,30(9):2549-2554
We recently reported that autophosphorylated rat brain protein kinase C (PKC) catalyzes a Ca2(+)- and phosphatidylserine- (PS-) dependent ATPase reaction. The Ca2(+)- and PS-dependent ATPase and histone kinase reactions of PKC each had a Km app(ATP) of 6 microM. Remarkably, the catalytic fragment of PKC lacked detectable ATPase activity. In this paper, we show that subsaturating concentrations of protein substrates accelerate the ATPase reaction catalyzed by PKC and that protein and peptide substrates of PKC induce ATPase catalysis by the catalytic fragment. At subsaturating concentrations, histone III-S and protamine sulfate each accelerated the ATPase activity of PKC in the presence of Ca2+ and PS by as much as 1.5-fold. At saturating concentrations, the protein substrates were inhibitory. Poly(L-lysine) failed to accelerate the ATPase activity, indicating that the acceleration observed with histone III-S and protamine sulfate was not simply a result of their gross physical properties. Furthermore, histone III-S induced the ATPase activity of the catalytic fragment of PKC, at both subsaturating and saturating histone concentrations. The induction of ATPase activity was also elicited by the peptide substrate Arg-Arg-Lys-Ala-Ser-Gly-Pro-Pro-Val, when the peptide was present at concentrations near its Km app. The induction of the ATPase activity by the nonapeptide provides strong evidence that the binding of phospho acceptor substrates to the active site of PKC can stimulate ATP hydrolysis. Taken together, our results indicate that PKC-catalyzed protein phosphorylation is inefficient, since it is accompanied by Pi production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
ClpB of Escherichia coli is an ATP-dependent ring-forming chaperone that mediates the resolubilization of aggregated proteins in cooperation with the DnaK chaperone system. ClpB belongs to the Hsp100/Clp subfamily of AAA+ proteins and is composed of an N-terminal domain and two AAA-domains that are separated by a "linker" region. Here we present a detailed structure-function analysis of ClpB, dissecting the individual roles of ClpB domains and conserved motifs in oligomerization, ATP hydrolysis, and chaperone activity. Our results show that ClpB oligomerization is strictly dependent on the presence of the C-terminal domain of the second AAA-domain, while ATP binding to the first AAA-domains stabilized the ClpB oligomer. Analysis of mutants of conserved residues in Walker A and B and sensor 2 motifs revealed that both AAA-domains contribute to the basal ATPase activity of ClpB and communicate in a complex manner. Chaperone activity strictly depends on ClpB oligomerization and the presence of a residual ATPase activity. The N-domain is dispensable for oligomerization and for the disaggregating activity in vitro and in vivo. In contrast the presence of the linker region, although not involved in oligomerization, is essential for ClpB chaperone activity.  相似文献   

20.
The catalytic activity of topoisomerase II is stimulated approximately 2-3-fold following phosphorylation by casein kinase II (Ackerman, P., Glover, C. V. C., and Osheroff, N. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3164-3168). In order to delineate the mechanism by which the activity of the enzyme is enhanced, the effects of casein kinase II-mediated phosphorylation on the individual steps of the catalytic cycle of Drosophila topoisomerase II were characterized. Phosphorylation did not affect reaction steps that preceded hydrolysis of the enzyme's high energy ATP cofactor. This included enzyme-DNA binding, pre-strand passage DNA cleavage/religation, the double-stranded DNA passage event, and post-strand passage DNA cleavage/religation. In contrast, the rate of topoisomerase II-mediated ATP hydrolysis was stimulated 2.7-fold following phosphorylation by casein kinase II. Since ATP hydrolysis is a prerequisite for enzyme turnover, it is concluded that phosphorylation modulates the overall catalytic activity of topoisomerase II by stimulating the enzyme's ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号