首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stereochemistry of the hydrogen transfer to NAD catalyzed by ribitol dehydrogenase (ribitol:NAD 2-oxidoreductase, EC 1.1.1.56) from Klebsiella pneumoniae and D-mannitol-1-phosphate dehydrogenase (D-mannitol-1-phosphate:NAD 2-oxidoreductase, EC 1.1.1.17) from Escherichia coli was investigated. [4-3H]NAD was enzymatically reduced with nonlabelled ribitol in the presence of ribitol dehydrogenase and with nonlabelled D-mannitol 1-phosphate and D-mannitol 1-phosphate dehydrogenase, respectively. In both cases the [4-3H]-NADH produced was isolated and the chirality at the C-4 position determined. It was found that after the transfer of hydride, the label was in both reactions exclusively confined to the (4R) position of the newly formed [4-3H]NADH. In order to explain these results, the hydrogen transferred from the nonlabelled substrates to [4-3H]NAD must have entered the (4S) position of the nicotinamide ring. These data indicate for both investigated inducible dehydrogenases a classification as B or (S) type enzymes. Ribitol also can be dehydrogenated by the constitutive A-type L-iditol dehydrogenase (L-iditol:NAD 5-oxidoreductase, EC 1.1.1.14) from sheep liver. When L-iditol dehydrogenase utilizes ribitol as hydrogen donor, the same A-type classification for this oxidoreductase, as expected, holds true. For the first time, opposite chirality of hydrogen transfer to NAD in one organic reaction--ribitol + NAD = D-ribu + NADH + H--is observed when two different dehydrogenases, the inducible ribitol dehydrogenase from K. pneumoniae and the constitutive L-iditol dehydrogenase from sheep liver, are used as enzymes. This result contradicts the previous generalization that the chirality of hydrogen transfer to the coenzyme for the same reaction is independent of the source of the catalyzing enzyme.  相似文献   

2.
A simple in situ model of alamethicin-permeabilized isolated rat liver mitochondria was used to investigate the channeling of NADH between mitochondrial malate dehydrogenase (MDH) and NADH:ubiquinone oxidoreductase (complex I). Alamethicin-induced pores in the mitochondrial inner membrane allow effective transport of low molecular mass components such as NAD+/NADH but not soluble proteins. Permeabilized mitochondria demonstrate high rates of respiration in the presence of malate/glutamate and NAD+ due to coupled reaction between MDH and complex I. In the presence of pyruvate and lactate dehydrogenase, an extramitochondrial competitive NADH utilizing system, respiration of permeabilized mitochondria with malate/glutamate and NAD+ was completely abolished. These data are in agreement with the free diffusion of NADH and do not support the suggestion of direct channeling of NADH from MDH to complex I.  相似文献   

3.
During aerobic growth of Escherichia coli, nicotinamide adenine dinucleotide (NADH) can initiate electron transport at either of two sites: Complex I (NDH-1 or NADH: ubiquinone oxidoreductase) or a single-subunit NADH dehydrogenase (NDH-2). We report evidence for the specific coupling of malate dehydrogenase to Complex I. Membrane vesicles prepared from wild type cultures retain malate dehydrogenase and are capable of proton translocation driven by the addition of malate+NAD. This activity was inhibited by capsaicin, an inhibitor specific to Complex I, and it proceeded with deamino-NAD, a substrate utilized by Complex I, but not by NDH-2. The concentration of free NADH produced by membrane vesicles supplemented with malate+NAD was estimated to be 1 μM, while the rate of proton translocation due to Complex I was consistent with a some what higher concentration, suggesting a direct transfer mechanism. This interpretation was supported by competition assays in which inactive mutant forms of malate dehydrogenase were able to inhibit Complex I activity. These two lines of evidence indicate that the direct transfer of NADH from malate dehydrogenase to Complex I can occur in the E. coli system.  相似文献   

4.
The structure of cytoplasmic malate dehydrogenase has been partially refined by crystallographic least squares methods. Using x-ray phases based on the refined coordinates, analysis of the resultant electron density maps has led to a new model of cytoplasmic malate dehydrogenase and a tentative "x-ray sequence." The two crystallographically independent subunits comprising the dimeric enzyme are nearly identical in structure and are related to each other by roughly 2-fold rotational symmetry. The best fit of the molecular structure of cytoplasmic malate dehydrogenase to that of lactate dehydrogenase has been obtained by least squares methods. The active sites of these two enzymes contain similarly oriented His-Asp pairs linked by a hydrogen bond which may function as a proton relay system during catalysis. This pair could also provide an explanation for the relatively stronger binding by cytoplasmic malate dehydrogenase and lactate dehydrogenase of NADH versus NAD. Similar His-Asp pairs have been observed in the serine proteases, thermolysin, and phospholipase A2, and the His-Asp pair may play a similar functional role in all of these enzymes.  相似文献   

5.
Amino acid racemases inherently catalyze the exchange of alpha-hydrogen of amino acids with deuterium during racemization in 2H2O. When the reactions catalyzed by alanine racemase (EC 5.1.1.1) and L-alanine dehydrogenase (EC 1.4.1.1), which is pro-R specific for the C-4 hydrogen transfer of NADH, are coupled in 2H2O, [4R-2H]NADH is exclusively produced. Similarly, [4S-2H]NADH is made in 2H2O with amino-acid racemase with low substrate specificity (EC 5.1.1.10) and L-leucine dehydrogenase (EC 1.4.1.9), which is pro-S specific. We have established a simple procedure for the in situ analysis of stereospecificity of C-4 hydrogen transfer of NADH by an NAD-dependent dehydrogenase by combination with either of the above two couples of enzymes in the same reaction mixture. When the C-4 hydrogen of NAD+ is fully retained after sufficient incubation, the stereospecificity of hydrogen transfer by a dehydrogenase is the same as that of alanine dehydrogenase or leucine dehydrogenase. However, when the C-4 hydrogen of NAD+ is exchanged with deuterium, the enzyme to be examined shows the different stereospecificity from alanine dehydrogenase or leucine dehydrogenase. Thus, we can readily determine the stereospecificity by 1H NMR measurement without isolation of the coenzymes and products.  相似文献   

6.
The stereochemistry of the hydrogen transfer to NAD catalyzed by (S)alanine dehydrogenase [ (S)alanine: NAD oxidoreductase (EC 1.4.1.1) ] from B. subtilis was investigated. The label at C-2 of (S) [2,3--3H] alanine was enzymatically transferred to NAD, and the [4--3H]NADH produced isolated and the stereochemistry at C-4 investigated. It was found that the label was exclusively located at the (R) position which indicates that (S)alanine dehydrogenase is an A-type enzyme. This result was confirmed in an alternate way by reducing enzymatically [4--3H]NAD with non labeled (S)alanine and (S)alanine dehydrogenase and investigating the stereochemistry of the ]4--3H]NADH produced. As expected, the label was now exclusively located at the (S) position. This proves that (S)alanine dehydrogenase isolated from B. subtilis should be classified as an A-enzyme with regard to the stereochemistry of the hydrogen transfer to NAD.  相似文献   

7.
Malate dehydrogenase may interfere with the assay of NAD malic enzyme, as NADH is formed during the conversion of malate to oxaloacetate. During the present study, two additional effects of malate dehydrogenase were investigated; they are evident only if the malate dehydrogenase reaction is allowed to reach equilibrium prior to initiating the malic enzyme reaction. One of these (Outlaw, Manchester 1980 Plant Physiol 65: 1136-1138) might cause an underestimation of NAD reduction by malic enzyme due to the oxidation of NADH during reversal of the malate dehydrogenase reaction. A second effect may result in overestimation of malic enzyme activity, as Mn2+-catalyzed oxaloacetate decarboxylation causes continuing net NADH formation via malate dehydrogenase. These effects were studied by assaying the activity of a partially purified preparation of Amaranthus retroflexus NAD malic enzyme in the presence or absence of purified NAD malate dehydrogenase.  相似文献   

8.
1. After hypotonic treatment spermatozoa have metabolic characteristics of mitochondria isolated from other cells. Ejaculated boar spermatozoa treated in this way can oxidise external NADH via both a lactate-pyruvate shuttle and a malate-aspartate cycle; this oxidation is coupled to the phosphorylation of ADP. 2. The dicarboxylate transport inhibitors butylmalonate, phenylsuccinate and bathophenanthroline sulphonate inhibit NADH oxidation dependent on added malate, glutamate and aspartate. alpha-Cyanocinnamate, a strong inhibitor of pyruvate transport, inhibits lactate-dependent NADH oxidation. 3. NADH oxidation dependent on malate, glutamate and aspartate is inhibited by uncoupling agents, but lactate-dependent NADH oxidation is stimulated. 4. Lactate-dependent NADH oxidation is inhibited by oxamate, an inhibitor of lactate dehydrogenase. Aminooxyacetate, an aminotransferase inhibitor, inhibits glutamate, malate and aspartate-dependent NADH oxidation. 5. Hypotonically-treated spermatozoa retain radioactivity after incubation with L-[U-14C]malate, [1,5-14C]citrate or [2-14C]malonate. Exchanges of retained radioactivity with various substrates indicate that dicarboxylate and tricarboxylate exchange carriers exist in the mitochondrial membrane.  相似文献   

9.
Exogenous NAD+ stimulated the rotenone-resistant oxidation of all the NAD+-linked tricarboxylic acid-cycle substrates in mitochondria from Jerusalem artichoke (Helianthus tuberosus L.) tubers. The stimulation was not removed by the addition of EGTA, which is known to inhibit the oxidation of exogenous NADH. It is therefore concluded that added NAD+ gains access to the matrix space and stimulates oxidation by the rotenone-resistant NADH dehydrogenase located on the matrix surface of the inner membrane. Added NAD+ stimulated the activity of malic enzyme and displaced the equilibrium of malate dehydrogenase; both observations are consistent with entry of NAD+ into the matrix space. Analysis of products of malate oxidation showed that rotenone-resistant oxygen uptake only occurred when the concentration of oxaloacetate was low and that of NADH was high. Thus it is proposed that the concentration of NADH regulates the activity of the two internal NADH dehydrogenases. Evidence is presented to suggest that the rotenone-resistant NADH dehydrogenase is engaged under conditions of high phosphorylation potential, which restricts electron flux through the rotenone-sensitive dehydrogenase (coupled to ATP synthesis).  相似文献   

10.
This study reports the effects of long-term ethanol consumption on kidney redox status, in terms of enzymatic mechanisms involved in regulating the cytosolic [NADH]/[NAD(+) ] balance. Wistar rats were treated with ethanol (2 g/kg body weight/24 h) via intragastric intubation for 10 and 30 weeks, respectively. Ethanol administration induced an enhancement of alcohol dehydrogenase activities and affected the capacity of the kidney to prevent NADH accumulation in the cytosol. After 10 weeks, the excess of NADH was balanced by increased activities of malate dehydrogenase and aspartate transaminase. In the event of a longer period of ethanol intake, the kidney was not able to balance the NADH excess, even though an increase in malate dehydrogenase, lactate dehydrogenase, aspartate transaminase, and alanine transaminase activities was noted. The electrophoretic analysis of alcohol dehydrogenase, lactate dehydrogenase, and malate dehydrogenase isoforms revealed differences between control and ethanol-treated animals. The results suggest that rat kidneys have a multicomponent metabolic response to the same daily dose of ethanol that functions to maintain the redox status and which varies with the length of the administration period.  相似文献   

11.
R E Johnson  J A Rupley 《Biochemistry》1979,18(16):3611-3616
The association reactions of NADH and NAD+ with dimeric pig heart supernatant malate dehydrogenase (s-MDH) have been measured at pH 6 and 8 by calorimetric and fluorescence methods, and the thermodynamic parameters describing these reactions have been evaluated. Coenzyme binding is associated with the uptake of 0.55 mol of H+/mol of NADH at pH 8 and 0.19 mol of H+ at pH 6. No significant effect of NAD+ binding on proton binding was observed. Increase in ionic strength strongly affects the free energies of binding of NAD+ and NADH. No cooperativity was observed in the enthalpy or free energy changes for binding of NAD+ or NADH. The differences in free energy of binding of NAD+ and NADH and the effect of pH on binding of NADH are entropy based. These effects are interpreted as reflecting a small number of interactions within the active site that are predominantly ionic.  相似文献   

12.
Palmitylcarnitine oxidation by isolated liver mitochondria has been used to investigate the interaction of fatty acid oxidation with malate, glutamate, succinate, and the malate-aspartate shuttle. Mitochondria preincubated with fluorocitrate were added to a medium containing 2mM ATP and ATPase. This system, characterized by a high energy change, allowed titration of respiration to any desired rate between States 4 and 3 (Chance, B., and Williams, G. R. (1956) Adv. Enzymol. Relat. Areas Mol. Biol. 17, 65-134). When respiration (reference, with palmitylcarnitine and malate as substrates) was set at 75% of State 3, the oxidation of palmitylcarnitine was limited by acetoacetate formation. The addition of malate or glutamate approximately doubled the rate of beta oxidation. Malate circumvented this limitation by citrate formation, but the effect of glutamate apparently was due to enhancement of the capacity for ketogenesis. The rate of beta oxidation was curtailed when malate and glutamate were both present. This curtailment was more pronounced when the malate-aspartate shuttle was fully reconstituted. Among the oxidizable substrates examined, succinate was most effective in inhibiting palmitylcarnitine oxidation. Mitochondrial NADH/NAD+ ratios were correlated positively with suppression of beta oxidation. The degree of suppression of beta oxidation by the malate-aspartate shuttle (NADH oxidation) or by succinate oxidation was dependent on the respiratory state. Both substrates extensively reduced mitochondrial NAD+ and markedly suppressed beta oxidation as respiration approached State 4. Calculations of the rates of flux of hydrogen equivalents through beta oxidation show that the suppression of beta oxidation by glutamate or by the malate-aspartate shuttle is accounted for by increased flux of reducing equivalents through mitochondrial malic dehydrogenase. This increased Flux is accompanied by an increase in the steady state NADH/NAD+ ratio and a marked decrease in the synthesis of citrate. The alpha-glycerophosphate shuttle was reconstituted with mitochondria isolated from rats treated with L-thyroxine. This shuttle was about equal to the reconstructed malate-aspartate shuttle in supression of palmitylcarnitine oxidation. This interaction could not be demonstrated in euthyroid animals owing to the low activity of the mitochondrial alpha-glycerol phosphate dehydrogenase. It is concluded that beta oxidation can be regulated by the NADH/NAD+ ratio. The observed stimulation of flux through malate dehydrogenase both by glutamate and by the malate-aspartate shuttle results in an increased steady state NADH/NAD+ ratio, and is linked to a stoichiometric outward transport of aspartate. We suggest, therefore, that some of the reducing pressure exerted by the malate-aspartate shuttle and by glutamate plus malate is provided through the energy-linked, electrogenic transport of aspartate out of the mitochondria. These results are discussed with respect to the mechanism of the genesis of ethanol-induced fatty liver.  相似文献   

13.
8-Bromo-adenosine diphosphoribose (br8 ADP-Rib) and nicotinamide 8-bromoadenine dinucleotide (Nbr8AD+) which are analogues of the coenzyme NAD+, were prepared and their liver alcohol dehydrogenase complexes studied by crystallographic methods. Nbr8AD+ is active in alcohol dehydrogenase complexes studied by crystallographic methods. Nbr8AD+ is active in hydrogen transport and br8ADP-Rib is a coenzyme competitive inhibitor for the enzymes liver alcohol dehydrogenase and yeast alcohol dehydrogenase. X-ray data were obtained for the complex between liver alcohol dehydrogenase and br8ADP-Rib to 0.45 nm resolution and for the liver alcohol dehydrogenase-adenosine diphosphoribose complex to 0.29-nm resolution. The conformations of these analogues were determined from the X-ray data. It was found that ADP-Rib had a conformation very similar to the corresponding part of NAD+, when NAD+ is bound to lactate and malate dehydrogenase. br8ADP-Rib had the same anti conformation of the adenine ring with respect to the ribose as ADP-Rib and NAD+, in contrast to the syn conformation found in 8-bromo-adenosine. The overcrowding at the 8-position is relieved in br8ADP-Rib by having the ribose in the 2' endo condormation instead of the usual 3' endo as in ADP-Rib and NAD+.  相似文献   

14.
The stereochemistry of the hydrogen transfer to NAD catalyzed by D-galactose dehydrogenase (E.C. 1.1.1.48) from P. fluorescens was investigated. The label at C-1 of D-[1--3H] galactose was enzymatically transferred to NAD and the resulting [4--3H]NADH was isolated and its stereochemistry at C-4 investigated. It was found that the label was exclusively located at the 4(S) position in NADH which calls for classification as a B-enzyme. This result was confirmed by an alternate approach in which [4--3H]NAD was reduced by D-galactose as catalyzed by D-galactose dehydrogenase. The sterochemistry at C-4 of the nicotinamide ring would then have to opposite to that in the first experiment. As expected, the label was now exclusively located in the 4(R) position, again confirming the B-calssification of the enzyme.  相似文献   

15.
Equilibrium, thermochemical, and time-resolved fluorescence measurements have been carried out in order to compare pig heart lactate dehydrogenase (LDH) and cytoplasmic malate dehydrogenase (MDH). The differences in the thermodynamic parameters for binding of NADH and NAD+ show the same pattern for both enzymes. The stronger binding of NADH is entropy-based, which can be understood as reflecting electrostatic interactions. The tryptophan fluorescence of MDH and LDH differ for the free enzymes and in quenching by NADH. The differences can be accounted for in terms of a single long-lived tryptophan residue present in LDH and not in MDH.  相似文献   

16.
At the normal pH of the cytosol (7.0 to 7.1) and in the presence of physiological (1.0 mM) levels of free Mg2+, the Vmax of the NADPH oxidation is only slightly lower than the Vmax of NADH oxidation in the cytosolic glycerol-3-phosphate dehydrogenase (E.C. 1.1.1.8) reaction. Under these conditions physiological (30 microM) levels of cytosolic malate dehydrogenase (E.C. 1.1.1.37) inhibited oxidation of 20 microM NADH but had no effect on oxidation of 20 microM NADPH by glycerol-3-phosphate dehydrogenase. Consequently malate dehydrogenase increased the ratio of NADPH to NADH oxidation of glycerol-3-phosphate dehydrogenase. On the basis of the measured KD of complexes between malate dehydrogenase and these reduced pyridine nucleotides, and their Km in the glycerol-3-phosphate dehydrogenase reactions, it could be concluded that malate dehydrogenase would have markedly inhibited NADPH oxidation and inhibited NADH oxidation considerably more than observed if its only effect were to decrease the level of free NADH or NADPH. This indicates that due to the opposite chiral specificity of the two enzymes with respect to reduced pyridine nucleotides, complexes between malate dehydrogenase and NADH or NADPH can function as substrates for glycerol-3-phosphate dehydrogenase, but the complex with NADH is less active than free NADH, while the complex with NADPH is as active as free NADPH. Mg2+ enhanced the interactions between malate dehydrogenase and glycerol-3-phosphate dehydrogenase described above. Lactate dehydrogenase (E.C. 1.1.1.27) had effects similar to those of malate dehydrogenase only in the presence of Mg2+. In the absence of Mg2+, there was no evidence of interaction between lactate dehydrogenase and glycerol-3-phosphate dehydrogenase.  相似文献   

17.
An integrated NAD+-dependent enzyme field-effect transistor (ENFET) device for the biosensing of lactate is described. The aminosiloxane-functionalized gate interface is modified with pyrroloquinoline quinone (PQQ) that acts as a catalyst for the oxidation of NADH. Synthetic amino-derivative of NAD+ is covalently linked to the PQQ monolayer. An affinity complex formed between the NAD+/PQQ-assembly and the NAD+-cofactor-dependent lactate dehydrogenase (LDH) is crosslinked and yields an integrated biosensor ENFET-device for the analysis of lactate. Biocatalyzed oxidation of lactate generates NADH that is oxidized by PQQ in the presence of Ca2+-ions. The reduced catalyst, PQQH2, is oxidized by O2 in a process that constantly regenerates PQQ at the gate interface. The biocatalyzed formation of NADH and the O2-stimulated regeneration of PQQ yield a steady-state pH gradient between the gate interface and the bulk solution. The changes in the pH of the solution near the gate interface and, consequently, the gate potential are controlled by the substrate (lactate) concentration in the solution. The device reveals the detection limit of 1 x 10(-4) M for lactate and the sensitivity of 24+/-2 mV dec(-1). The response time of the device is as low as 15 s.  相似文献   

18.
Interaction of bovine heart lactate dehydrogenase with erythrocyte lipids   总被引:1,自引:0,他引:1  
The interaction between bovine heart lactate dehydrogenase and erythrocyte lipid suspension as a function of pH, NAD, NADH, lipid and salt concentration was studied by ultracentrifugation. In the presence of erythrocyte lipid liposomes the enzyme forms two kinds of complex: lactate dehydrogenase adsorbed to liposomes and soluble lactate dehydrogenase-phospholipid complexes. The two complexes reveal different dependence of their stability on pH values. Lactate dehydrogenase decreases its specific activity when it binds to the phospholipid molecules. Efficient adsorption of lactate dehydrogenase to liposomes occurs in their pH range 6.0-8.0 and at low ionic strength. The adsorption is diminished in the presence of NAD+ but it is not influenced by NADH. Possible mechanisms of the interaction and implications for the function in vivo are discussed.  相似文献   

19.
The crystal structure of malate dehydrogenase from Escherichia coli has been determined with a resulting R-factor of 0.187 for X-ray data from 8.0 to 1.87 A. Molecular replacement, using the partially refined structure of porcine mitochondrial malate dehydrogenase as a probe, provided initial phases. The structure of this prokaryotic enzyme is closely homologous with the mitochondrial enzyme but somewhat less similar to cytosolic malate dehydrogenase from eukaryotes. However, all three enzymes are dimeric and form the subunit-subunit interface through similar surface regions. A citrate ion, found in the active site, helps define the residues involved in substrate binding and catalysis. Two arginine residues, R81 and R153, interacting with the citrate are believed to confer substrate specificity. The hydroxyl of the citrate is hydrogen-bonded to a histidine, H177, and similar interactions could be assigned to a bound malate or oxaloacetate. Histidine 177 is also hydrogen-bonded to an aspartate, D150, to form a classic His.Asp pair. Studies of the active site cavity indicate that the bound citrate would occupy part of the site needed for the coenzyme. In a model building study, the cofactor, NAD, was placed into the coenzyme site which exists when the citrate was converted to malate and crystallographic water molecules removed. This hypothetical model of a ternary complex was energy minimized for comparison with the structure of the binary complex of porcine cytosolic malate dehydrogenase. Many residues involved in cofactor binding in the minimized E. coli malate dehydrogenase structure are homologous to coenzyme binding residues in cytosolic malate dehydrogenase. In the energy minimized structure of the ternary complex, the C-4 atom of NAD is in van der Waals' contact with the C-3 atom of the malate. A catalytic cycle involves hydride transfer between these two atoms.  相似文献   

20.
The stereospecificity of hydrogen transfer in the synthesis of saccharopine from alpha-ketoglutarate and L-lysine catalyzed by saccharopine dehydrogenase (N5-(1,3-dicarboxypropyl)-L-lysine: NAD oxidoreductase (L-lysine-forming), EC 1.5.1.7) was examined by using [4A-3H]- and [4B-3H]NADH. The enzyme showed the A-stereospecificity. The NMR analysis of the saccharopine prepared with [4"A-2H]NADH revealed that the label was incorporated into the C-2 of the glutaryl moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号