首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neural mechanisms involved in the selective processing of salient or behaviourally important stimuli are uncertain. We used an aversive conditioning paradigm in human volunteer subjects to manipulate the salience of visual stimuli (emotionally expressive faces) presented during positron emission tomography (PET) neuroimaging. Increases in salience, and conflicts between the innate and acquired value of the stimuli, produced augmented activation of the pulvinar nucleus of the right thalamus. Furthermore, this pulvinar activity correlated positively with responses in structures hypothesized to mediate value in the brain right amygdala and basal forebrain (including the cholinergic nucleus basalis of Meynert). The results provide evidence that the pulvinar nucleus of the thalamus plays a crucial modulatory role in selective visual processing, and that changes in perceptual salience are mediated by value-dependent plasticity in pulvinar responses.  相似文献   

2.
In the early visual system, suppression occurs between neurons representing different stimulus properties. This includes features such as orientation (cross-orientation suppression), eye-of-origin (interocular suppression) and spatial location (surround suppression), which are thought to involve distinct anatomical pathways. We asked if these separate routes to suppression can be differentiated by their pattern of gain control on the contrast response function measured in human participants using steady-state electroencephalography. Changes in contrast gain shift the contrast response function laterally, whereas changes in response gain scale the function vertically. We used a Bayesian hierarchical model to summarise the evidence for each type of gain control. A computational meta-analysis of 16 previous studies found the most evidence for contrast gain effects with overlaid masks, but no clear evidence favouring either response gain or contrast gain for other mask types. We then conducted two new experiments, comparing suppression from four mask types (monocular and dichoptic overlay masks, and aligned and orthogonal surround masks) on responses to sine wave grating patches flickering at 5Hz. At the occipital pole, there was strong evidence for contrast gain effects in all four mask types at the first harmonic frequency (5Hz). Suppression generally became stronger at more lateral electrode sites, but there was little evidence of response gain effects. At the second harmonic frequency (10Hz) suppression was stronger overall, and involved both contrast and response gain effects. Although suppression from different mask types involves distinct anatomical pathways, gain control processes appear to serve a common purpose, which we suggest might be to suppress less reliable inputs.  相似文献   

3.
Evidence is presented that a neurophysiologically-inspired mathematical model, originally developed for the generation of spontaneous EEG (electroencephalogram) activity, can produce VEP (visual evoked potential)-like waveforms when pulse-like signals serve as input. It was found that the simulated VEP activity was mainly due to intracortical excitatory connections rather than direct thalamic input. Also, the model-generated VEPs exhibited similar relationships between prestimulus EEG characteristics and subsequent VEP morphology, as seen in human data. Specifically, the large correlation between the N1 amplitude and the prestimulus alpha phase angle, and the insensitivity of P2 to the latter feature, as observed in actual VEPs to low intensity flashes, was also found in the model-generated data. These findings provide support for the hypothesis that the spontaneous EEG and the VEP are generated by some of the same neural structures and that the VEP is due to distributed activity, rather than dipolar sources.  相似文献   

4.
There is now good evidence that perception of motion is strongly suppressed during saccades (rapid shifts of gaze), presumably to blunt the disturbing sense of motion that saccades would otherwise elicit. Other aspects of vision, such as contrast detection of high-frequency or equiluminant gratings, are virtually unaffected by saccades [1] [2] [3] [4] [5]. This has led to the suggestion that saccades may suppress selectively the magnocellular pathway (which is strongly implicated in motion perception), leaving the parvocellular pathway unaffected [5] [6]. Here, we investigate the neural level at which perception of motion is suppressed. We used a simple technique in which an impression of motion is generated from only two frames, allowing precise control over the stimulus [7] [8]. One frame has a certain fixed contrast, whereas the contrast of the other (the test frame) is varied to determine the threshold for motion discrimination (that is, the lowest test-frame contrast level at which the direction of motion can be correctly guessed). Contrast thresholds of the test depended strongly and non-monotonically on the contrast of the fixed-contrast frame, with a minimum at medium contrast. To study the effect of saccadic suppression, we triggered the two-frame sequence by a voluntary saccade. Thresholds during saccades increased in a way that suggested that saccadic suppression precedes motion analysis: when the test frame was first in the motion sequence there was a general depression of sensitivity, whereas when it was second, the contrast response curve was shifted to a higher contrast range, sometimes even resulting in higher sensitivity than without a saccade. The dependence on presentation order suggests that saccadic suppression occurs at an early stage of visual processing, on the single frames themselves rather than on the combined motion signal. As motion detection itself is thought to occur at an early stage, saccadic suppression must take place at a very early phenomenon.  相似文献   

5.
Weak suppression of visual context in chronic schizophrenia   总被引:6,自引:0,他引:6  
  相似文献   

6.
Scalp-recorded electroencephalographic (EEG) signals produced by partial synchronization of cortical field activity mix locally synchronous electrical activities of many cortical areas. Analysis of event-related EEG signals typically assumes that poststimulus potentials emerge out of a flat baseline. Signals associated with a particular type of cognitive event are then assessed by averaging data from each scalp channel across trials, producing averaged event-related potentials (ERPs). ERP averaging, however, filters out much of the information about cortical dynamics available in the unaveraged data trials. Here, we studied the dynamics of cortical electrical activity while subjects detected and manually responded to visual targets, viewing signals retained in ERP averages not as responses of an otherwise silent system but as resulting from event-related alterations in ongoing EEG processes. We applied infomax independent component analysis to parse the dynamics of the unaveraged 31-channel EEG signals into maximally independent processes, then clustered the resulting processes across subjects by similarities in their scalp maps and activity power spectra, identifying nine classes of EEG processes with distinct spatial distributions and event-related dynamics. Coupled two-cycle postmotor theta bursts followed button presses in frontal midline and somatomotor clusters, while the broad postmotor "P300" positivity summed distinct contributions from several classes of frontal, parietal, and occipital processes. The observed event-related changes in local field activities, within and between cortical areas, may serve to modulate the strength of spike-based communication between cortical areas to update attention, expectancy, memory, and motor preparation during and after target recognition and speeded responding.  相似文献   

7.
The few studies that have been done on short-latency, subcortical visual evoked potentials (SVEPs) have all used stroboscopic flashes as the evoking stimulus. The dimensions of the stimulator, the acoustical artifacts and the photic spread to the examination room limited the use of SVEPs to research laboratories. With the advent of high-efficiency light-emitting diodes (LEDs), high-intensity flashes can now be generated from goggle-mounted LEDs. In this study, a goggle-mounted high-intensity LED stimulator was constructed and its flashes used to evoke SVEPs. The reproducibility of SVEPs across subjects and the ease of using the high-intensity LED flash stimulator make them a promising candidate for testing subcortical visual pathway function in the operating room.  相似文献   

8.
Detection of targets that move within visual clutter is a common task for animals searching for prey or conspecifics, a task made even more difficult when a moving pursuer needs to analyze targets against the motion of background texture (clutter). Despite the limited optical acuity of the compound eye of insects, this challenging task seems to have been solved by their tiny visual system. Here we describe neurons found in the male hoverfly,Eristalis tenax, that respond selectively to small moving targets. Although many of these target neurons are inhibited by the motion of a background pattern, others respond to target motion within the receptive field under a surprisingly large range of background motion stimuli. Some neurons respond whether or not there is a speed differential between target and background. Analysis of responses to very small targets (smaller than the size of the visual field of single photoreceptors) or those targets with reduced contrast shows that these neurons have extraordinarily high contrast sensitivity. Our data suggest that rejection of background motion may result from extreme selectivity for small targets contrasting against local patches of the background, combined with this high sensitivity, such that background patterns rarely contain features that satisfactorily drive the neuron.  相似文献   

9.

Background

The pathophysiology of migraine is incompletely understood, but evidence points to hyper-responsivity of cortical neurons being a key feature. The basis of hyper-responsiveness is not clear, with an excitability imbalance potentially arising from either reduced inhibition or increased excitation. In this study, we measure centre-surround contrast suppression in people with migraine as a perceptual analogue of the interplay between inhibition and excitation in cortical areas responsible for vision. We predicted that reduced inhibitory function in migraine would reduce perceptual surround suppression. Recent models of neuronal surround suppression incorporate excitatory feedback that drives surround inhibition. Consequently, an increase in excitation predicts an increase in perceptual surround suppression.

Methods and Findings

Twenty-six people with migraine and twenty approximately age- and gender-matched non-headache controls participated. The perceived contrast of a central sinusoidal grating patch (4 c/deg stationary grating, or 2 c/deg drifting at 2 deg/sec, 40% contrast) was measured in the presence and absence of a 95% contrast annular grating (same orientation, spatial frequency, and drift rate). For the static grating, similar surround suppression strength was present in control and migraine groups with the presence of the surround resulting in the central patch appearing to be 72% and 65% of its true contrast for control and migraine groups respectively (t(44) = 0.81, p = 0.42). For the drifting stimulus, the migraine group showed significantly increased surround suppression (t(44) = 2.86, p<0.01), with perceived contrast being on average 53% of actual contrast for the migraine group and 68% for non-headache controls.

Conclusions

In between migraines, when asymptomatic, visual surround suppression for drifting stimuli is greater in individuals with migraine than in controls. The data provides evidence for a behaviourally measurable imbalance in inhibitory and excitatory visual processes in migraine and is incompatible with a simple model of reduced cortical inhibitory function within the visual system.  相似文献   

10.
Coordinated eye-head movements evoked by the presentation of visual, auditory and combined audio-visual targets were studied in 24 human subjects. At 60 deg located targets latencies of eye and head movements were shorter for auditory than for visual stimuli. Latencies were shorter for bisensory than for monosensory targets. The eye and head latencies were differently influenced by the modality of the stimulus when the eccentricity of the target was changed, but not by the variation of the stimulus duration. The different responses of the eye and the head depending on target modality and target eccentricity can be partially attributed to perceptual and central processing mechanisms, and are important to answer the question about the initial event in coordinated eye-head orientation.  相似文献   

11.
A study was conducted comparing the incidence with which the N2/P2/N3 was obtained after flash VEP in 3 groups: anterior visual pathway lesions, non-tumor craniotomies and non-cranial surgery. These groups allowed evaluation of the effects of anesthesia, visual pathway lesions and craniotomy on the stability of the flash VEP. It was found that the latency was not significantly affected in the 3 groups, whereas the incidence of obtainable peaks and the amplitudes were adversely affected by anesthesia, cranial surgical manipulation and especially by the presence of a visual pathway lesion. These adverse effects were so marked that the application of flash VEP for intraoperative monitoring seems of little use.  相似文献   

12.
13.
This paper uses mathematical modeling to study the mechanisms of surround suppression in the primate visual cortex. We present a large-scale neural circuit model consisting of three interconnected components: LGN and two input layers (Layer 4Ca and Layer 6) of the primary visual cortex V1, covering several hundred hypercolumns. Anatomical structures are incorporated and physiological parameters from realistic modeling work are used. The remaining parameters are chosen to produce model outputs that emulate experimentally observed size-tuning curves. Our two main results are: (i) we discovered the character of the long-range connections in Layer 6 responsible for surround effects in the input layers; and (ii) we showed that a net-inhibitory feedback, i.e., feedback that excites I-cells more than E-cells, from Layer 6 to Layer 4 is conducive to producing surround properties consistent with experimental data. These results are obtained through parameter selection and model analysis. The effects of nonlinear recurrent excitation and inhibition are also discussed. A feature that distinguishes our model from previous modeling work on surround suppression is that we have tried to reproduce realistic lengthscales that are crucial for quantitative comparison with data. Due to its size and the large number of unknown parameters, the model is computationally challenging. We demonstrate a strategy that involves first locating baseline values for relevant parameters using a linear model, followed by the introduction of nonlinearities where needed. We find such a methodology effective, and propose it as a possibility in the modeling of complex biological systems.  相似文献   

14.
As a guide to optimizing the geometry of bright light treatment, 12 healthy subjects were studied three times in the laboratory from 11 p.m. to 2 a.m. On three evenings, in counterbalanced orders, subjects received 500 lux in the upper visual field, 500 lux in the lower visual field, or 5 lux while watching television. In the upper visual field, 500 lux significantly suppressed melatonin, as compared to 500 lux in the lower visual field or to 5 lux. In the lower visual field, 500 lux produced intermediate suppression of borderline significance. The results suggest that bright light treatment of depression or circadian phase disorders might be most effective when applied in the upper visual field.  相似文献   

15.
Spatial selective attention is the mechanism that facilitates the selection of relevant information over irrelevant information in the visual field. The current study investigated whether foreknowledge of the presence or absence of distractors surrounding an impending target stimulus results in preparatory changes in visual cortex. We cued the location of the target and the presence or absence of distractors surrounding the target while changes in blood oxygen level dependent (BOLD) signals were measured. In line with prior work, we found that top-down spatial attention resulted in an increased contralateral BOLD response, evoked by the cue throughout early visual cortex (areas V1, V2 and V3). In addition, cues indicating distractor presence evoked a substantial increase in the magnitude of the BOLD signal in visual area V3, but not in V2 or V1. This study shows that prior knowledge concerning the presence of a distractor results in enhanced attentional modulation of visual cortex, in visual areas where neuronal receptive fields are large enough to encompass both targets and distractors. We interpret these findings as evidence that top-down attentional control processes include active preparatory suppression mechanisms for irrelevant, distracting information in the visual scene.  相似文献   

16.
17.
The effects of electroconvulsive shock (ECS) on the flash visual evoked potential (FVEP) were studied in the awake albino rat. Immediately after the induction of generalised seizure activity, the FVEP was totally abolished although accidentally averaged rhythmic epileptiform activity was often present in the trace. During the second recording, a potential had reappeared but this response was suspected of being a superior colliculus FVEP masquerading as a cortical response. By the third recording, the genuine cortical FVEP had returned, albeit with an abnormally large amplitude. The waveform subsequently remained significantly distorted although it had regained an approximately normal morphology within 6–7 min of the administration of ECS. It was not possible to identify the principal site of action of ECS but it was concluded that ECS may impact on activity generated at more than one location within the optic pathways. The present findings are compared with a number of previous animal and human studies where the FVEP was apparently preserved following ECS and attempts are made to explain the discrepancy in results. The relevance of the present findings for understanding the pathophysiology of electrical stunning and of the loss or impairment of consciousness during generalised epileptic seizures is also discussed.  相似文献   

18.
The latent periods of saccadic eye movements in response to peripheral visual stimuli were measured in 8 right-handed healthy subjects using Posner's paradigm "COST-BENEFIT". In 6 subjects, the saccade latency in response to visual target presented in expected location in valid condition was shorter than that in neutral condition ("benefit"). Increase in saccade latency in response to the visual target presented in unexpected location in valid condition versus neutral condition took place only in 4 subjects ("cost"). A decrease in left-directed saccade latency in response to expected target presented in the left hemifield and increase in saccade latency in response to unexpected left target in comparison with analogous right-directed saccades were observed in valid condition. This phenomenon can be explained by the dominance of the right hemisphere in the processes of spatial orientation and "disengage" of attention.  相似文献   

19.
The effect of electrical stimulation of the hypothalamic positive reinforcement zone (PRZ), the neutral hypothalamic zone (NZ), and the reticular formation (RF), of the midbrain on the impulse activity of single neurons of the visual cortex evoked by light flashes was studied in unanesthetized and uncurarized white rats. Poststimulus histograms of the neurons's responses were compared. Under the influence of stimulation the evoked activity of the neurons which responded to light changed in a majority of them (from 63% for the NZ to 82% for the RF). Qualitative differences were found in the effects of PRZ and RF stimulation. The effects of PRZ stimulation consisted in the invariability or in a decrease in the frequency of the neuron's discharge comprising the short-latent response, and an increase in the frequency of the discharges in the long-latent response ("positive-motivation" type). The effects of RF stimulation were manifested in intensification of the neuronal discharges in the short-latent and a decrease in the discharges in the long-latent response ("reticular" type). The responses of a considerable number of the neurons changed to the "combined" type. The data obtained indicates the different natures and mechanisms of the ascending activating effects caused by stimulation of the PRZ and the RF and which brings about positive nonspecific reinforcements. These effects, which are manifested differently in different periods of the neuron's working cycle cannot be explained by "energizing" or "tonus" concepts; their explanation must be sought for in informational (systemic) concepts.N. I. Grashchenkov Laboratory of Problems of Functional Control in the Human and Animal Organism, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 359–368, July–August, 1971.  相似文献   

20.
Researchers have conjectured that eye movements during visual search are selected to minimize the number of saccades. The optimal Bayesian eye movement strategy minimizing saccades does not simply direct the eye to whichever location is judged most likely to contain the target but makes use of the entire retina as an information gathering device during each fixation. Here we show that human observers do not minimize the expected number of saccades in planning saccades in a simple visual search task composed of three tokens. In this task, the optimal eye movement strategy varied, depending on the spacing between tokens (in the first experiment) or the size of tokens (in the second experiment), and changed abruptly once the separation or size surpassed a critical value. None of our observers changed strategy as a function of separation or size. Human performance fell far short of ideal, both qualitatively and quantitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号