首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matveeva TV  Lutova LA 《Genetika》2000,36(12):1725-1728
The effect of azacytidine, a demethylating agent, on the expression of traits concomitant with tumor formation was studied in inbred radish (Rhaphanus sativus) lines carrying genomic sequences homologous to the tmr/tml genes of Agrobacteriium tumefaciens. AzaC was found to have no effect on the traits studied, which provided evidence that the capacity for tumor formation in radish lines does not depend on the level of methylation of these sequences.  相似文献   

2.
The role of phytohormones in genetic tumor formation on radish crop-roots was investigated using the collection of inbred Raphanus sativus lines as a model system. The genetic analysis showed that the trait <<tumor formation>> was recessive and monogenic in some crossings. The spectrum of main phytohormones in tumor and non-tumor radish lines has shown that at the initiation of tumor formation (30 days old plants) the amounts of main cytokinins in the lower part of plants from the tumor line were dramatically increased. The transformation of the non-tumor line by the ipt gene of Agrobacterium tumefaciens resulted in tumor formation in plants of the T1 progeny. We propose that increasing the cytokinin/auxin ratio may lead to tumor formation on radish crop roots.  相似文献   

3.
The higher plant tumors are convenient models for studying the genetic control mechanism of plant cell division. There are two types of tumors: induced by the pathogenic factor and genetically determined. The development of both tumor types was related to the changes in cytokinin metabolism and/or signal transduction. In this work, the effect of synthetic cytokinins on the in vitro morphogenesis of cotyledon explants and isolated apices of radish seedlings was studied in several inbred radish lines (Raphanus sativus var. radicula Pers.) that differed in their in vivo tumorigenic properties. It was noted that root formation was stronger affected by kinetin while the treatment with thidiazuron tended to induce active callus formation in cotyledon explants of all inbred lines, except IIa. Growing with benzyladenine produced an intermediate effect as regards all morphogenetic responses. Cytokinin treatment of tumorigenic lines enhanced necrotic development in cotyledon explants. Culturing isolated apices of regenerated plants produced tumors anatomically and morphologically similar to those developing in vivo. Some of the lines nontumorigenic in vivo with enhanced formation of calli on cotyledon explants also developed tumors on apical explants in vitro when treated with cytokinins. These data suggest that different mechanisms for tumor formation operate in various radish lines. The radish lines are classified into three types: (1) necrotic lines with tumor formation putatively related to endogenous cytokinin level, (2) callus-forming lines with cell division enhanced in response to cytokinins, and (3) necrosis-and callus-forming lines with both mechanisms of tumor formation involved.  相似文献   

4.
Tumor formation was studied in inbred radish lines that produce tumors on plant roots during flowering. In all radish lines under consideration, the sequences homologous to oncogenes tmr/tml of Agrobacterium tumefaciens were revealed by Southern hybridization. No sequences homologous to the tms locus of A. tumefaciens and the oncogenes of A. rhizogenes were determined. It was found that auxin sensitivity and the tumor-producing capacity were coinherited. We suggest that tumor phenotype arise as a result of a combination between agrobacterial "cytokinin" oncogenes and certain alleles of "auxin" radish genes.  相似文献   

5.
The study addresses the control of plant cell division and differentiation using the model of tumor-forming lines of radish. Expression of the genes involved in control of the cell cycle (CycD3), maintenance of meristematic cell activity (STM, WUS, and KNAT1), and primary response to cytokinin (ARR) was studied in inbred radish lines characterized by tumor growth at different stages of development. The influence of exogenic cytokinin on the expression of the genes of interest is analyzed. The possible role of the CycD3, KNAT1, tSTM, WUS, and ARR5 in tumor formation in radish is discussed.  相似文献   

6.
The genetic structure of populations is an important determinant of the evolutionary potential of a species. Colonizing plants tend to be characterized by low within- and high among-population variability. Genetic differentiation of both floral traits and isozymes was studied in six populations of wild radish (Raphanus raphanistrum). Evidence for differentiation in both sets of traits was found, but patterns of differentiation of floral traits did not coincide with isozyme differentiation. Contrary to most colonizing species, wild radish showed high within- and only moderate among-population variability at isozyme loci. In addition, levels of differentiation did not correspond to geographic distance between the populations. These results are likely due at least in part to the self-incompatibility system of this species, long-distance movement of large numbers of wild radish seeds by humans, and introgression from cultivated radish (R. sativus).  相似文献   

7.
An approach which could be used for quick searches for RAPD markers is described for groups of radish lines with certain morphological traits. The lines are characterized by various morpho-physiological abnormalities, including tumor formation (lines 12, 19, and 21) and non-terminal development of the flower meristem as a variant of tumor growth (line 6). We found four markers which differentiate tumor radish lines 12, 19, and 21 from the others, and two which differentiate line 6.  相似文献   

8.
9.
The study addresses the control of plant cell division and differentiation using the model of tumor-forming lines of radish. Expression of the genes involved in control of the cell cycle (CycD3), maintenance of meristematic cell activity (STM, WUS, and KNAT1), and primary response to cytokinin (ARR) was studied in inbred radish lines characterized by tumor growth at different stages of development. The influence of exogenic cytokinin on the expression of the genes of interest is analyzed. The possible role of the CycD3, KNAT1, STM, WUS, and ARR5 in tumor formation in radish is discussed.  相似文献   

10.
A major objective of breeders using the Ogu-INRA cytoplasmic male sterility (cms) system in rapeseed (Brassica napus L.) is to obtain double low restorer lines with a shorter introgression and a good agronomic value. The development of low glucosinolate content (low GC) restorer lines often occurs through the deletion of a part of the introgression. One of these lines has lost the radish Pgi-2 allele expression, without recovering that of the rapeseed Pgi-2 allele. This line shows a defect in the meiotic transmission of the restorer gene Rfo and a very poor agronomic value. We initiated a programme to force non-spontaneous recombination between this Rfo-carrying introgression and the rapeseed homologous chromosome from a low GC B. napus line. Gamma ray irradiation was used to induce chromosome breakage just prior meiosis aiming at just such a recombination. Low GC cms plants were crossed with the pollen of irradiated plants that were heterozygous for this introgression. The F2 families were scored for their vigour, transmission rate of Rfo and female fertility. One family of plants, R2000, showed an improved behaviour for these three traits. This family presented a unique combination of molecular markers when compared to other rapeseed restorers analysed, which suggests that the recombination event allowed the recovery of B. oleracea genetic information that was originally replaced by the radish introgression in the original restorers. This resulted in a duplicated region (originating from radish and B. oleracea) on the chromosome carrying the introgression in the R2000 family.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

11.
12.
The effect of short pulses of red and or far-red light on the formation of individual carotenoids was tested in etiolated radish seedlings (Raphanus sativus L.). Red light induces an enhanced synthesis of β-carotene, lutein. violaxanthin and neoxanthin, while the level of antheraxanthin is decreased. Far-red light reverses the red light effects to the level of the far-red light control. The data indicate that in radish seedlings active phytochrome Pfr initiates the light-induced carotenoid synthesis, which is bound to thylakoid formation.  相似文献   

13.
14.
The effect of high concentrations of the simplest polyphenols on extension growth of maize (Zea mays L.) shoot ooleoptile segments, lettuce (Lactuca sativa L.) roots, and on radish (Raphanus sativus L.) seed germination, was studied. Quinone formation in the process of plant incubation in polyphenol solutions was proved. The data obtained are presumably explained by the important part that is played by the quinoid products of phenol oxidation in the ability ofo- andp-biatomic phenols to inhibit growth.  相似文献   

15.
Summary Genetic control of differentiation processes in radish was studied in vitro on the level of morphogenic capacities of explants. We have shown that when cultured on hormone-free MS medium (Murashige and Skoog, 1962), isolated radish cotyledons can produce callus and/or roots. At the same time, excised seedling apices placed on MS medium supplied with exogenous cytokinin can form multiple shoots or crop-root-like structures. In our model, the ability of explants to undergo the above morphogenic events in culture under certain in vitro conditions was examined as a genetic marker. As forms tested, highly inbred radish lines maintained by tight inbreeding for 28–34 generations were used. We have shown that ability of excised cotyledons to produce callus is controlled by a single gene, while their root-producing capacity is under di-genic control with some additional influence of the cytoplasm. Analysis of inheritance of seedling apex capacity to produce crop-root-like structures in response to exogenous cytokinin led us to propose the interaction of three genes in control of this trait.  相似文献   

16.
In rape (Brassica napus), no resistance to the beet cyst nematode (BCN) Heterodera schachtii is available. This study was carried out to determine the specific chromosome(s) of resistant radish (Raphanus sativus) carrying the gene(s) for nematode resistance as a prequisite to convert rape from a host into a trap crop for this pest. A Raphanobrassica progeny of 25 plants was analyzed which segregated for all nine chromosomes of the Raphanus genome in a genetic background of synthetic rape. The number of radish chromosomes was determined by fluorescence in situ hybridization, using the Raphanus-specific DNA probe pURsN; and their type was identified by chromosome-specific randomly amplified polymorphic DNA markers. Five different multiple rape–radish chromosome additions (comprising the whole set of nine radish chromosomes, a–i) were selected and crossed to rape. For each cross-progeny, the number of cysts on plant roots was counted 42 days after inoculation with a L2 larvae suspension. Simultaneously, the plants were characterized for the presence or absence of individual radish chromosomes, using sets of chromosome-specific markers. Thus, the effect of each radish chromosome on cyst number was tested. Chromosome d had a major resistance effect, whereas the presence/absence of the other radish chromosomes had nearly no influence on cyst number. Plants with added chromosome d showed a resistance level comparable with that of the radish donor parent. The analysis in the cross to rape of a plant monosomic only for chromosome d confirmed the strong effect of this chromosome on nematode resistance. A further experiment comprising seven crosses using winter rape breeding lines and monosomic addition line d as pollen parent provided the same results on a broader genetic basis. In each case, the added chromosome d in a single dosage caused nearly the full resistance of the radish donor. Resistance was independent of the glucosinolate content in the roots. The possibilities for stabilizing BCN resistance in rape and its use for other crops and nematodes are discussed.Communicated by C. Möllers  相似文献   

17.
The beet cyst nematode (Heterodera schachtii Schmidt) can be controlled biologically in highly infected soils of sugar beet rotations using resistant varieties of oil radish (Raphanus sativus L. ssp. oleiferus DC.) as a green crop. Resistant plants stimulate infective juveniles to invade roots, but prevent them after their penetration to complete the life cycle. The resistance trait has been transferred successfully to susceptible rapeseed by the addition of a complete radish chromosome. The aim of the study was to construct a genetic map for radish and to develop resistance-associated markers. The map with 545 RAPD, dpRAPD, AFLP and SSR markers had a length of 1,517 cM, a mean distance of 2.8 cM and consisted of nine linkage groups having sizes between 120 and 232 cM. Chromosome-specific markers for the resistance-bearing chromosome d and the other eight radish chromosomes, developed previously from a series of rapeseed-radish addition lines, were enclosed as anchor markers. Each of the extra chromosomes in the addition lines could be unambiguously assigned to one of the radish linkage groups. The QTL analysis of nematode resistance was realized in the intraspecific F2 mapping population derived from a cross between varieties ‘Pegletta’ (nematode resistant) x ‘Siletta Nova’ (susceptible). A dominant major QTL Hs1 Rph explaining 46.4% of the phenotypic variability was detected in a proximal position of chromosome d. Radish chromosome-specific anchor markers with known map positions were made available for future recombination experiments to incorporate segments carrying desired genes as Hs1 Rph from radish into rapeseed by means of chromosome addition lines.  相似文献   

18.
 A study was conducted on a two-row/six-row cross of barley to (1) determine the yield potential, (2) detect epistasis and genetic correlations, (3) estimate the heritabilities of six agronomic traits, and (4) study the effect of the V locus on the agronomic traits in the barley cross. The effects of five other marker loci (Re2, s, R, Est1, and Est5) on the six agronomic traits were also studied. One hundred and ninety doubled-haploid (DH) lines were derived from a ‘Leger’/CI9831 cross using the bulbosum method. The DH lines and the two parents were tested for grain yield, test weight, seed weight, plant height, lodging, and heading/maturity at two locations in Eastern Canada in 1993. Additive×additive epistasis and genetic correlations were detected for some of the agronomic traits. Many of the heritability estimates were high; however, significant progress in yield improvement would be difficult to achieve because of a low mean yield of the DH lines. Under the growing conditions in Eastern Canada, six-row lines outyielded two-row by 20–27%. Six-row lines, however, were associated with low test weight, low seed weight, and severe lodging. Some two-row lines yielded higher than the two-row parent CI9831, but none of the six-row lines yielded higher than the six-row parent ‘Leger’. The R, s, and Est5 loci were associated with the six agronomic traits, but the Est1 locus was apparently not associated with the agronomic traits. The effect of the Re2 locus was probably due to its close linkage with the V locus. Further studies are needed to determine if superior six-row lines can be developed from two-row/six-row crosses. Received: 19 September 1996 / Accepted: 18 October 1996  相似文献   

19.
TALE (three-amino acid loop extension)转录因子在植物生长发育及细胞分化过程中起重要作用.在多种植物中均已鉴定出TALE转录因子的家族成员,但是萝卜TALE转录因子家族的研究鲜有报道.文中通过生物信息学手段在象牙白萝卜全基因组中鉴定出了分布于9条染色体上的33个TALE家族基因.研究...  相似文献   

20.
Nearly 1000 plants have been regenerated from leaf protoplasts of two cauliflower (Brassica oleracea ssp.botrytis) alloplasmic inbred lines. One line (7642A) carried the Ogura (R1) cms cytoplasm derived from radish; the other line (7642B) carried a normalBrassica cytoplasm and was the fertile maintainer for the cms line. The majority of regenerated plants displayed normal vegetative morphology; they formed normal cauliflower heads and retained the floral characteristics of seed-grown plants from which they were derived. We found no change in either male sterility or in the low temperature-induced chlorosis associated with the 7642A line. Mitochondrial DNA analysis by hybridization with five cloned mtDNA probes revealed no apparent alteration in 75 regenerated plants of both lines. These results indicate that cytoplasmic traits inBrassica oleracea are stable after one cycle of in vitro culture and regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号