首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alpha-Fetoprotein (AFP) is a major serum glycoprotein during embryonic and early postnatal life. A number of diverse biologic functions have been attributed to AFP, including osmotic and carrier function and immunosuppressive activity. In this study we demonstrate that AFP selectively stimulates in vitro proliferation of two distinct subsets of adult murine bone marrow cells. One population of AFP-reactive bone marrow cells expresses surface receptors for soybean agglutinin (SBA) lectin. SBA+ bone marrow cells are resistant to cytotoxic pretreatment with T-cell-specific antisera and are not retained on Ig-anti-Ig affinity columns. The absence of conventional T- and B-cell markers, coupled with the presence of SBA receptors, suggests that AFP-activated non-T bone marrow cells may belong to an immature set of B lymphocytes. A second population of AFP-responsive bone marrow cells expresses the Thy-1+ Lyt 1+2- phenotype characteristic of conventional mature adult T helper cells. The potential physiological relevance of the mitogenic effects of AFP on bone marrow cells with respect to immunoregulatory processes in the fetal/newborn environments is discussed.  相似文献   

2.
The acute graft-versus-host disease (GVHD) generated in BDF1 mice by the injection of spleen cells from the C57BL/6 parental strain induces a direct cell-mediated attack on host lymphohematopoietic populations, resulting in the reconstitution of the host with donor hematopoietic stem cells. We examined the effect of GVHD on the donor and host hematopoiesis in parental-induced acute GVHD. The bone marrow was hypoplastic and the number of hematopoietic progenitor cells significantly decreased at 4 weeks after GVHD induction. However, extramedullary splenic hematopoiesis was present and the number of hematopoietic progenitor cells in the spleen significantly increased at this time. Fas expression on the host spleen cells and bone marrow cells significantly increased during weeks 2 to 8 of GVHD. Host cell incubation with anti-Fas Ab induced apoptosis, and the number of hematopoietic progenitor cells decreased during these weeks. A significant correlation between the augmented Fas expression on host bone marrow cells and the decreased number of host bone marrow cells by acute GVHD was observed. Furthermore, the injection of Fas ligand (FasL)-deficient B6/gld spleen cells failed to affect host bone marrow cells. Although Fas expression on repopulating donor cells also increased, Fas-induced apoptosis by the repopulating donor cells was not remarkable until 12 weeks, when more than 90% of the cells were donor cells. The number of hematopoietic progenitor cells in the bone marrow and the spleen by the repopulating donor cells, however, decreased over an extended time during acute GVHD. This suggests that Fas-FasL interactions may regulate suppression of host hematopoietic cells but not of donor hematopoietic cells. Hematopoietic dysfunctions caused by the reconstituted donor cells are independent to Fas-FasL interactions and persisted for a long time during parental-induced acute GVHD.  相似文献   

3.
We have reported that an inhibitor of interleukin-3 (NIL-3) is produced from murine bone marrow cells in response to excess stimulation of interleukin-3. In this report, we attempted the purification of the NIL-3 activity from bone marrow culture supernatant in the presence of interleukin-3. The purified NIL-3 activity was a protein with relative molecular weight of 54.5 kDa (SDS-PAGE), which inhibited the growth of IL-3 dependent DA-1 cell growth in a dose dependent manner. The N-terminal amino acid sequence of purified NIL-3 activity was determined to be homologous to beta-2 glycoprotein I (apolipoprotein H: APO-H). The gene expression of APO-H was detected by nested-PCR in STIL-3 C5-CM stimulated total bone marrow cells and STIL-3 C5-CM stimulated bone marrow fraction 2 (Fr. 2) which has been reported as a hematopoietic stem cell rich fraction. These observations indicate the possibility that the APO-H is the NIL-3 which was produced from bone marrow cells in response to excess IL-3 stimuli.  相似文献   

4.
Basic fibroblast growth factor (bFGF or FGF-2) is an angiogenic and pleiotropic growth factor involved in the proliferation and differentiation of numerous cell types. It is expressed mostly in tissues of mesoderm and neuroectoderm origin, and is thought to play an important role in the mesoderm induction. Although hematopoietic cells derive from the mesoderm, relatively few studies have, until recently, addressed the role of FGF-2 in hematopoiesis. FGF-2 is expressed in cells of the bone marrow including stromal cells, and possibly cells from several hematopoietic cell lineages. It is stored in the bone marrow extra-cellular matrix and released by enzymes such as heparanase, plasmin, or phospholipase C and D. FGF-receptors (FGF-Rs) are expressed in leukemic cell lines and in hematopoietic cells. FGF-2 positively regulates hematopoiesis, by acting on stromal cells, on early and committed hematopoietic progenitors, and possibly on some mature blood cells. The action of FGF-2 is most likely indirect since its action, on megakaryocytopoiesis for example, is abrogated by anti-IL6 antibodies. It synergizes with hematopoietic cytokines, or antagonizes the negative regulatory effects of TGF-β Taken together, these results demonstrate that FGF-2 is a potent hematopoietic growth factor that is likely to play an important role in physiological and pathological hematopoiesis.  相似文献   

5.
Amphibians represent the first phylogenetic group to possess hematopoietic bone marrow. However, adult amphibian hematopoiesis has only been described in a few species and with conflicting data. Bone marrow, kidney, spleen, liver, gut, stomach, lung, tegument, and heart were therefore collected from adult Lithobates catesbeianus and investigated by light microscopy and immunohistochemical methods under confocal laser microscopy. Our study demonstrated active hematopoiesis in the bone marrow of vertebrae, femur, and fingers and in the kidney, but no hematopoietic activity inside other organs including the spleen and liver. Blood cells were identified as a heterogeneous cell population constituted by heterophils, basophils, eosinophils, monocytes, erythrocytic cells, lymphocytes, and their precursors. Cellular islets of the thrombocytic lineage occurred near sinusoids of the bone marrow. Antibodies against CD34, CD117, stem cell antigen, erythropoietin receptor, and the receptor for granulocyte colony-stimulating factor identified some cell populations, and some circulating immature cells were seen in the bloodstream. Thus, on the basis of these phylogenetic features, we propose that L. catesbeianus can be used as an important model for hematopoietic studies, since this anuran exhibits hematopoiesis characteristics both of lower vertebrates (renal hematopoiesis) and of higher vertebrates (bone marrow hematopoiesis).  相似文献   

6.
Y Akasaka 《Human cell》1990,3(3):193-200
Bone marrow and spleen are the major hematopoietic tissue in adult mice. However, little is known about the specific mechanism regulating hematopoiesis within these tissues. Since Dexter et al. first described conditions to maintain bone marrow hematopoiesis, long term bone marrow culture (LTBMC) has been developed in order to analyze the mechanism of the maintenance of proliferation and differentiation of hematopoietic stem cells in vitro. Furthermore, several stromal cell lines which are able to support the growth and differentiation of hematopoietic lineage, has been established from LTBMC. Although it is well known that bone marrow stromal cell lines are able to produce colony stimulating factors, it has been suggested that the stromal cell factors which involve membrane bound moieties must have a key role in the regulation of hematopoiesis. We expect that monoclonal antibodies to the surface of bone marrow stromal cells could detect such a critical stroma-associated protein that bounds the cell surface of the bone marrow stroma.  相似文献   

7.
The successful ex vivo reconstruction of human bone marrow is an extraordinarily important basic scientific and clinical goal. Fundamentally, the system is the paradigm of a complex interactive tissue, in which the proliferation and regulated differentiation of one parenchymal cell type (the hematopoietic stem cell) is governed by the surrounding stromal cells. Understanding and reproducing the molecular interactions between bone marrow stromal cells and stem cells in tissue culture models is therefore the critical step in successful bone marrow tissue culture. Clinically, successful reconstruction of human bone marrow would permit the controlled production of mature blood cells for transfusion therapy, and immature bone marrow stem cells for bone marrow transplantation. In approaching the bone marrow culture system, we recognize the critical role that hematopoietic growth factors (HGFs) play in hematopoiesis. Since stromal cells in traditional human bone marrow cultures produce little HGFs, we have begun by asking whether local supplementation of hematopoietic growth factors via genetically engineered stromal cells might augment hematopoiesis in liquid cultures. The results indicate that locally produced GM-CSF and IL-3 do augment hematopoiesis for several weeks in culture. In combination with geometric and dynamic approaches to reconstructing physiological bone marrow microenvironments, we believe that this approach has promise for reconstructing human bone marrow ex vivo, thereby permitting its application to a variety of basic and clinical problems.  相似文献   

8.
Hematopoietic stem cell transplantation is the most powerful treatment modality for a large number of hematopoietic malignancies, including leukemia. Successful hematopoietic recovery after transplantation depends on homing of hematopoietic stem cells to the bone marrow and subsequent lodging of those cells in specific niches in the bone marrow. Migration of hematopoietic stem cells to the bone marrow is a highly regulated process that requires correct regulation of the expression and activity of various molecules including chemoattractants, selectins and integrins. This review will discuss recent studies that have extended our understanding of the molecular mechanisms underlying adhesion, migration and bone marrow homing of hematopoietic stem cells.  相似文献   

9.
Hematopoietic stem cell transplantation is the most powerful treatment modality for a large number of hematopoietic malignancies, including leukemia. Successful hematopoietic recovery after transplantation depends on homing of hematopoietic stem cells to the bone marrow and subsequent lodging of those cells in specific niches in the bone marrow. Migration of hematopoietic stem cells to the bone marrow is a highly regulated process that requires correct regulation of the expression and activity of various molecules including chemoattractants, selectins and integrins. This review will discuss recent studies that have extended our understanding of the molecular mechanisms underlying adhesion, migration and bone marrow homing of hematopoietic stem cells.  相似文献   

10.
Mesenchymal stem cells (MSCs) are a population of pluripotent cells within the bone marrow microenvironment defined by their ability to differentiate into cells of the osteogenic, chondrogenic, tendonogenic, adipogenic, and myogenic lineages. We have developed methodologies to isolate and culture-expand MSCs from human bone marrow, and in this study, we examined the MSC's role as a stromal cell precursor capable of supporting hematopoietic differentiation in vitro. We examined the morphology, phenotype, and in vitro function of cultures of MSCs and traditional marrow-derived stromal cells (MDSCs) from the same marrow sample. MSCs are morphologically distinct from MDSC cultures, and flow cytometric analyses show that MSCs are a homogeneous cell population devoid of hematopoietic cells. RT-PCR analysis of cytokine and growth factor mRNA in MSCs and MDSCs revealed a very similar pattern of mRNAs including IL-6, -7, -8, -11, -12, -14, and -15, M-CSF, Flt-3 ligand, and SCF. Steady-state levels of IL-11 and IL-12 mRNA were found to be greater in MSCs. Addition of IL-1α induced steady-state levels of G-CSF and GM-CSF mRNA in both cell preparations. In contrast, IL-1α induced IL-1α and LIF mRNA levels only in MSCs, further emphasizing phenotypic differences between MSCs and MDSCs. In long-term bone marrow culture (LTBMC), MSCs maintained the hematopoietic differentiation of CD34+ hematopoietic progenitor cells. Together, these data suggest that MSCs represent an important cellular component of the bone marrow microenvironment. J. Cell. Physiol. 176:57–66, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
When bone marrow cells of (WB X C57BL/6)F1-+/+ (WBB6F1-+/+) and WB-+/+ (WB) mice were directly injected into the skin of genetically mast cell-deficient WBB6F1-W/Wv mice, mast cell clusters appeared at the injection sites. However, the number of WB bone marrow cells necessary for appearance of mast cell clusters was significantly larger than when bone marrow cells of WBB6F1-+/+ mice were used. When WB bone marrow cells were mixed either with WB thymus cells or with silica particles, the proportion of injection sites at which mast cell clusters appeared increased to the level that was observed after the injection of the same number of WBB6F1-+/+ bone marrow cells. When suckling WBB6F1-W/Wv mice of less than or equal to 18 days of age were used as recipients, bone marrow cells of WBB6F1-+/+ and WB mice produced mast cell clusters with a comparable efficiency. Both syngeneic thymus cells and silica particles are known to abrogate the hybrid resistance that is observed in the spleen against parental hematopoietic stem cells. The hybrid resistance in the spleen is not detectable in suckling mice, either. Thus, the poor growth of mast cell precursors in the skin and the poor growth of hematopoietic stem cells in the spleen seem to be regulated by the same mechanism.  相似文献   

12.
Using the hematopoietic colony technique, we have investigated the repopulating potential of bone marrow cells and leukocytes of blood from normal mice and have demonstrated that the frequency of hematopoietic stem cells in bone marrow is 50 to 150 times that of stem cells in the circulating blood. The differentiation capacity of these stem cells has also been examined. Results of comparative studies of the serial sections of hematopoietic colonies formed from marrow and blood leukocytes indicate that the differentiation capacity of stem cells from marrow and blood is similar, and that at least 80% of these cells differentiate along a single cell line. Thus, peripheral blood stem cells can effect a complete hematopoietic graft, establishing in the host, donor red cells, granulocytes, and platelets. The possibility that blood leukocytes may serve as a potential source of stem cells for hematopoietic transplants has been considered. Although blood contains stem cells, their frequency is so low as to make it unlikely that they would become a useful source of precursor cells for transplantation purposes.  相似文献   

13.
We previously cloned a gene for a novel myosin (called MysPDZ) containing a PDZ-domain from bone marrow stromal cells. This new myosin is found in humans and classified as one of the class XVIII myosins (Myo18A). Here, we report the hematopoietic cell-specific splicing isoform (MysPDZbeta) in addition to the previously reported isoform (MysPDZalpha). Combined with mouse genome sequence data, the overall genome structure and generation of the two spliced isoforms are deduced. The MysPDZbeta protein lacks a PDZ-domain in the N-terminal region. Studies of the subcellular localization of the two spliced isoforms indicated that MysPDZalpha containing the PDZ domain co-localizes with the ER-Golgi complex, while MysPDZbeta, which lacks the PDZ domain, localizes diffusely in the cytoplasm. These results suggest that the isoforms differ in their subcellular localization and may have different functions in membrane ruffling and membrane traffic pathways. The PDZ-containing spliced isoform (MysPDZalpha) is not expressed in bone marrow hematopoietic cells, whereas MysPDZbeta lacking the PDZ is specifically expressed in most hematopoietic cells. It is noted that neither isoform is expressed in red blood cells. Interestingly, MysPDZalpha was detected in mature but not in immature macrophages, and its level increased after the induction of differentiation of M1 cells, suggesting a functional role of PDZ-containing myosin in macrophages.  相似文献   

14.
The classical view of the renin-angiotensin system (RAS) as a circulating endocrine system has evolved to organ- and tissue-based systems that perform paracrine/autocrine functions. Angiotensin II (Ang II), the dominant effector peptide of the RAS, regulates cellular growth in a wide variety of tissues in (patho)biological states. In 1996, we hypothesized that there exists a locally active RAS in the bone marrow affecting the growth, production, proliferation and differentiation of hematopoietic cells. Evidences supporting this hypothesis are growing. Ang II, through interacting with Ang II type 1 (AT1) receptor stimulates erythroid differentiation. This stimulatory effect of Ang II on erythropoiesis was completely abolished by a specific AT1 receptor antagonist, losartan. AT1a receptors are present on human CD34(+) hematopoietic stem cells. Ang II increases hematopoietic progenitor cell proliferation and this effect was also blocked by losartan. Angiotensin-converting enzyme (ACE) is involved in enhancing the recruitment of primitive stem cells into S-phase in hematopoietic bone marrow by degrading tetrapeptide AcSDKP. ACE inhibitors modified the circulating hematopoietic progenitors in healthy subjects. RAS may also affect pathological/neoplastic hematopoiesis. Renin has been isolated from leukemic blast cells. Higher bone marrow ACE levels in acute leukemic patients suggested that ACE is produced at higher quantities in the leukemic bone marrow. In this review, the 'State of the Art' of the local bone marrow RAS is summarized. A local RAS in the bone marrow can mediate, in an autocrine/paracrine fashion, some of the principal steps of hematopoietic cell production. To show a causal link between the components of RAS and the other regulatory hematopoietic growth factors is not only an academic curiosity. Elucidation of such a local bone marrow system may offer novel therapeutic approaches in pathologic/neoplastic conditions.  相似文献   

15.
The side population (SP) phenotype has been reported as a method to identify hematopoietic stem cells in the bone marrow based upon differential staining with the fluorescent dye, Hoechst 33342. This technique has drawn great interest in the stem cell community, as it may provide a simple approach to the enrichment of progenitor cells from a variety of normal and malignant tissues. The frequency of these cells and their performance in functional assays has varied considerably within the literature. To investigate mechanisms that may contribute to the SP phenotype, we measured the fluorescence emission of Hoechst-stained bone marrow cells as a function of both time and dye concentration using a custom flow cytometer and data acquisition software. These measurements demonstrate that all nucleated cells within the bone marrow undergo an identical staining pattern at varying rates, even under conditions previously reported to abrogate the SP. Therefore, the SP phenotype is not unique to stem cells, but rather represents a transient feature of marrow cells exposed to Hoechst 33342 for varying amounts of time. We propose that heterogeneity of SP-defined populations may be a consequence of the rate at which differing cell populations accumulate Hoechst 33342. Further, we suggest that dye uptake kinetics will likely be an important factor for optimal use of Hoechst 33342 in isolating stem cells.  相似文献   

16.
Bone marrow stromal microenvironment is essential for the maintenance of the hematopoietic stem cell renewal both by cell-cell interaction and cytokine production. However, stromal cells also exhibit drug metabolizing activities and they may accumulate the drug and successively affect hematopoietic progenitors by a retarded release. Our study investigated the role of both primary culture of murine bone marrow stroma and established stromal cells (SR-4987) in modulating the "in vitro" toxic activity of Doxorubicin (DXR) against murine granulocyte-macrophage progenitors (CFU-GM). The main part of the study has been performed by a "in vitro" agar bilayer technique based on the CFU-GM assay performed over a feederlayer of stromal cells. The results suggest that bone marrow stromal cells play also an important role in decreasing the toxicity of Doxorubicin. Further SR-4987 stromal cells produce a Doxorubicin metabolite (not belonging to the series of metabolites described in literature) which is completely ineffective in inhibiting the growth of CFU-GM and the activity of topoisomerase I. Our data suggest that bone marrow stromal cells must be considered as a cell population having opposite pharmacological roles in modulating the drug toxicity on hematopoietic progenitors. In our model a mechanism of detoxification concerns the capacity of SR-4987 stromal cells to inactivate the drug. For a better prediction of drug hematotoxicity, it is very important to develop "in vitro" cell models able to discriminate between positive and negative modulation of drug toxicity that stromal cells can exert in the bone marrow microenvironment.  相似文献   

17.
Magnetic Resonance (MR) imaging was used to examine the hematopoietic bone marrow in the vertebral bodies of eight healthy subjects, and of 35 cancer patients who had been previously treated with radiation therapy. MR was instrumental in distinguishing viable hematopoietic tissue (red marrow) from adipose tissue (yellow marrow), whose presence reflected the extent of radiation-induced bone marrow injury. Different water content in proliferating hematopoietic tissue and adipose tissue enabled clear distinction of the two components even inside the same vertebral body. Three patterns of bone marrow viability were observed in irradiated patients: 1. Patients undergoing therapy at the time of MR study, and patients who had received low-intermediate dose several years before MR examination showed no alteration as compared with healthy controls (i.e. homogeneous presence of red marrow). 2. Patients who had received low-intermediate dose few years before MR, showed either partial re-colonization of yellow marrow or almost complete ablation of active red marrow with rare areas of re-colonization. 3. Patients who had received high dose, showed complete depletion of red marrow (fatty substitution) independently of the length of time elapsed since radiation therapy. Therefore, bone marrow recovery after radiation therapy was associate with two variables: received dose and length of time allowed for re-colonization by surviving hematopoietic tissue. In conclusion, our results provide evidence that MR can be purposively used to study composition and distribution of normal bone marrow, and to asses the extent of radiation-induced bone marrow injury; to monitor bone marrow recovery (or the lack of it); and in the general follow-up of treated cancer patients.  相似文献   

18.
Bone marrow cells of mesenchymal origin play an important role in adaptation of physiological systems to space flight. Hematopoiesis, immunity, and homeostasis of bone tissue depend on their functional activity. An investigation that was carried out in the framework of the Bion and Bion-M programs showed a decrease of the number of rat bone marrow hematopoietic progenitors and the inhibition of lympho- and erythropoiesis when the granulocyte-macrophage linage was activated. A negative influence on nonhematopoietic bone marrow cells was also revealed. The pathogenetic influence of radiation and microgravity on the bone marrow progenitor cells has remained unclear so far. The goal of this research was to study the effect of a 30-day unloading and 6 days of γ-irradiation on rat bone marrow progenitor cells. The study was conducted on male rats of four groups: vivarium control (VC), hindlimb unloading (HU), irradiation (IR), and combined action (HU + IR). The following parameters have been examined: the number of bone marrow mononuclear cells, proliferative activity of marrow mononuclear cells, immunophenotype, number of hematopoietic CFU and CFU-f, and differentiation potency of hematopoietic and stromal bone marrow precursors. It was found that the cellularity and proliferation activity of rat bone marrow cells did not change under simulation of space flight. The number of CFU-f was decreased. Irradiation was accompanied by an increase in the hematopoietic cell share among total bone marrow mononuclear cells, while their activity was attenuated. The osteopotential of the stromal precursors was unchanged. Adipogenic differentiation was stimulated with irradiation. The functional activity of bone marrow progenitor cells was restored after 2 weeks of recovery. Thus, 30-day simulation of space flight factors negatively affected the morphofunctional properties of rat bone marrow progenitor cells. These effects were reversible upon 2 weeks of recovery.  相似文献   

19.
The pathogenic mechanisms underlying the depressed hematopoietic functions seen in human immunodeficiency virus-infected individuals were explored in rhesus monkeys infected with the simian immunodeficiency virus of macaques (SIVmac). Bone marrow hematopoietic progenitor cell colony formation, both granulocyte/macrophage (CFU-GM) and erythrocyte (BFU-E), was shown to be decreased in number in SIVmac-infected rhesus monkeys. SIVmac was readily isolated from bone marrow cells of infected monkeys and was shown to be harbored in macrophages rather than T lymphocytes. The in vitro infection of normal bone marrow cells by SIVmac inhibited colony formation. A striking in vivo correlation between increased SIVmac load in bone marrow cells and decreased hematopoietic progenitor cell colony growth was also shown. Finally, inhibition of SIVmac replication in bone marrow macrophages resulted in increased progenitor cell colony growth from bone marrow cells. These results suggest that the infection of bone marrow macrophages by the acquired immunodeficiency syndrome (AIDS) virus may contribute to depressed bone marrow hematopoietic progenitor cell growth. Moreover, inhibition of AIDS virus replication in these macrophages might induce significant improvement in hematopoietic function.  相似文献   

20.
Forty-seven years ago, the parathyroid hormone (PTH) in one injection of Lilly's old bovine parathyroid extract, PTE, was found to greatly increase the 30-day survival of heavily X-irradiated rats when given from 18 h before to as long as 3 h after irradiation but no later. This was the first indication that PTH might stimulate hematopoiesis. Recent studies have confirmed the relation between PTH and hematopoiesis by showing that hPTH-(1-34)OH increases the size of the hematopoietic stem cell pool in mice. The peptide operates through a cyclic AMP-mediated burst of Jagged 1 production in osteoblastic cells lining the stem cells' niches on trabecular bone surfaces. The osteoblastic cells' Jagged 1 increases the hematopoietic stem cell pool by activating Notch receptors on attached stem cells. PTH-triggered cyclic AMP signals also directly stimulate the proliferation of the hematopoietic stem cells. However, the single PTH injection in the early experiments using PTE probably increased the survival of irradiated rats mainly by preventing the damaged hematopoietic progenitors from irreversibly initiating self-destructive apoptogenesis during the first 5 h after irradiation. It has also been shown that several daily injections of hPTH-(1-34)OH enable lethally irradiated mice to survive by stimulating the growth of transplanted normal bone marrow cells. If the osteogenic PTHs currently entering or on the verge of entering the market for treating osteoporosis can also drive hematopoiesis in humans as well as rodents, they could be potent tools for reducing the damage inflicted on bone marrow by cytotoxic cancer chemotherapeutic drugs and ionizing radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号