首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specific capsular polysaccharide produced by Rhodococcus equi serotype 4 was found to be a high-molecular-weight acidic polymer composed of D-glucose, D-mannose, pyruvic acid and a previously unidentified 5-amino-3,5-dideoxynonulosonic (rhodaminic) acid in the proportions 2:1:1:1. Structural analysis, employing a combination of microanalytical methods, nuclear magnetic resonance spectroscopy, and mass spectrometric techniques, established that the polysaccharide consisted of linear repeating tetrasaccharide units having the sequence of residues shown below. In the native polysaccharide, the rhodaminic acid residues were present as their acetamido derivatives (RhoANAc) and carried 1-carboxyethylidene groups that bridged the O-7 and O-9 positions. Treatment of the capsular polysaccharide with dilute acetic acid and/or anhydrous hydrogen fluoride under hydrolytic/solvolytic conditions, resulted in the formation of four different oligosaccharide species. The 1H and 13C NMR resonances of these oligosaccharide fragments and of the native serotype 4 capsular polysaccharides were fully assigned by homo- and heteronuclear chemical shift correlation methods.  相似文献   

2.
The capsular polysaccharide of Haemophilus pleuropneumoniae serotype 1 (ATCC 27088) was found to be a teichoic acid type polysaccharide of a repeating disaccharide unit composed of 2-acetamido-2-deoxy-D-glucose and D-galactose units. By composition analysis, methylation, partial hydrolysis, dephosphorylation, and one- and two-dimensional 500-MHz proton nuclear magnetic resonance experiments, together with 13C nuclear magnetic resonance studies, it was concluded that the capsular polysaccharide is a high molecular weight linear polymer having the structure: (Formula: see text)  相似文献   

3.
The antigenic lipopolysaccharide O polysaccharides of capsular serotypes 9 and 11 were examined by chemical, immunological, and nuclear magnetic resonance methods. Immunodiffusion tests carried out on these O antigens indicated that both contained common epitopes which were also shared by Actinobacillus pleuropneumoniae serotype 1. Chemical analysis and high-field nuclear magnetic resonance spectroscopy showed that the O antigens of serotypes 9 and 11 were high-molecular-weight polymers consisting of a backbone of repeating trisaccharide units composed of alpha-L-rhamnopyranosyl and alpha-D-glucopyranosyl residues (2:1). One of the alpha-L-rhamnose units forms a branch point and is stoichiometrically substituted with terminal 2-acetamido-2-deoxy-beta-D-glucose residues in the serotype 11 O polysaccharide, but only to the extent of 25% in the serotype 9 O polysaccharide. Thus, the serotype 9 O polysaccharide contains two different repeating units: a tetrasaccharide unit with the same structure as that of the serotype 11 O polysaccharide and a trisaccharide unit: [formula: see text] where R = beta-D-GlcpNAc for serotype 1 and 11 O polysaccharides, and R = H (75%) and R = beta-D-GlcpNAc (25%) for serotype 9. The structure of the previously determined serotype 1 O polysaccharide (E. Altman, J.-R. Brisson, and M. B. Perry, Biochem. Cell. Biol. 64:17-25, 1986) is identical to that of the serotype 11 O polysaccharide. We propose a more complete serotyping scheme for A. pleuropneumoniae which includes designation of both the capsular (K) and O antigens.  相似文献   

4.
The capsular polysaccharide of Haemophilus (Actinobacillus) pleuropneumoniae serotype 5 (ATCC 33377) was found to be a linear type polysaccharide of a repeating disaccharide unit composed of 2-acetamido-2-deoxy-D-glucose and 3-deoxy-D-manno-2-octulosonic acid (dOclA). By composition analysis, methylation, partial hydrolysis and 1H and 13C nuclear magnetic resonance studies, it was concluded that the capsular polysaccharide is a high-molecular-mass unbranched polymer having the structure: [6)-alpha-D-GlcNAcp-(1-5)-beta-dOclAp-(2]n.  相似文献   

5.
Cell-wall lipopolysaccharide isolated from Pasteurella haemolytica serotype T3 using the phenol-water extraction procedure was shown to be an S type lipopolysaccharide by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Hydrolysis with mild acid afforded a lipid-free, antigenic O-chain polysaccharide. On the basis of one- and two-dimensional 1H and 13C nuclear magnetic resonance studies, in conjunction with microanalytical chemical methods, the O-polysaccharide was determined to be a linear polymer of a disaccharide repeating unit having the structure. [----3)-beta-D-G1cpNAc-(1----4)-alpha-L-Rhap-(1----]n  相似文献   

6.
The capsular polysaccharide of Actinobacillus pleuropneumoniae serotype 5b (strain L20) was found to be a high molecular mass polymer composed of 2-acetamido-2-deoxy-D-glucose, D-glucose, and 3-deoxy-D-manno-octulosonic acid (KDO). Methylation analysis, partial hydrolysis and a combination of homonuclear and 1H-detected heteronuclear shift-correlated nuclear magnetic resonance experiments showed the polysaccharide to be a branched polymer of a trisaccharide repeating unit, having the structure: [formula; see text]  相似文献   

7.
During a study of serotyping of Cryptococcus neoformans, we found that the type strain of C. neoformans (CBS 132) was serotype A-D. This strain agglutinated with both factor 7 serum (specific for serotype A) and factor 8 serum (specific for serotype D) in our serotyping system. Therefore, we investigated the chemical structure of the antigenic capsular polysaccharide of this strain. The soluble capsular polysaccharide was obtained from the culture supernatant fluid by precipitation with ethanol. Column chromatography of the polysaccharide on DEAE-cellulose yielded three fractions (F-1 to F-3). The major antigenic activity was found in the F-3 fraction. The results obtained by methylation analysis, controlled Smith degradation-methylation analysis, partial acid hydrolysis, and other structural studies of F-3 polysaccharide indicated that the polysaccharide contains mannose, xylose, and glucuronic acid at a ratio of 7:2:2, and has a backbone of alpha (1-3)-linked D-mannopyranoside residues with a single branch of beta (1-2)-xylose and glucuronic acid. The ratio of mannose residues with or without a branch in the F-3 polysaccharide was 4:3 and its molecular weight calculated from the average of the degree of polymerization was 46,500 daltons. These results indicate that the chemical structure of the capsular polysaccharide of serotype A-D is very similar to those from serotypes A and D, suggesting that small differences in the molar ratio and pattern of linkage of monosaccharides in the branch of the polysaccharides of the three serotypes may be responsible for their different specificities.  相似文献   

8.
Proteus mirabilis 2573 (ATCC 49565) produces an acidic capsular polysaccharide which was shown from glycose analysis, carboxyl reduction, methylation, periodate oxidation, and the application of one dimensional and two-dimensional high-resolution nuclear magnetic resonance techniques to be a high-molecular-weight polymer of branched trisaccharide units composed of 2-acetamido-2-deoxy-D-glucose (N-acetyl-D-glucosamine), 2-acetamido-2,6-dideoxy-L-galactose (N-acetyl-L-fucosamine), and D-glucuronic acid, having the structure: [formula: see text] P. mirabilis 2573 also produces an O:6 serotype lipopolysaccharide in which the O-chain component has the same structure as the homologous capsular polysaccharide. This is the first report of a defined capsular polysaccharide in this bacterial genus.  相似文献   

9.
The capsular polysaccharide of Haemophilus pleuropneumoniae serotype 2 (ATCC 27089) is composed of D-glucose (two parts), D-galactose (one part), glycerol (one part), and phosphate (one part). Hydrolysis, dephosphorylation, methylation, enzymic studies, and 1H and 13C nuclear magnetic resonance experiments showed that the polysaccharide is a high molecular weight polymer of a tetrasaccharide repeating units, linked by monophosphate diester and having the following structure: (Formula: see text).  相似文献   

10.
The capsular polysaccharide of Haemophilus pleuropneumoniae serotype 3 (ATCC 27090) is composed of D-galactose (one part), 2-acetamido-2-deoxy-D-glucose (one part), glycerol (one part), and phosphate (one part). From hydrolysis, dephosphorylation, methylation, and 1H and 13C nuclear magnetic resonance studies, the polysaccharide was found to be a high molecular weight polymer of a repeating trisaccharide unit, joined through monophosphate diester linkages and having the following structure: (formula; see text).  相似文献   

11.
The phenol-phase soluble cellular lipopolysaccharide isolated by the phenol/water extraction method from Yersinia enterocolitica serotype O:9 cells was shown by hydrolytic, periodate oxidation, methylation and nuclear magnetic resonance studies to be an S-type lipopolysaccharide with a linear O-antigenic polysaccharide of 1,2-linked 4,6-dideoxy-4-formamido-alpha-D-mannopyranosyl units. The serological cross-reactivity between Y. enterocolitica serotype O:9 and the lipopolysaccharides of Vibrio cholerae and Brucella species can now be related to the presence of N-acylated 4-amino-4,6-dideoxy-alpha-D-mannopyranosyl residues in their respective O-antigenic chains.  相似文献   

12.
By phenol-water extraction an aqueous-phase soluble cellular lipopolysaccharide was isolated from Haemophilus pleuro-pneumoniae serotype 1. It was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, hydrolysis, methylation, and both one- and two-dimensional 1H and 13C nuclear magnetic resonance studies to be an S-type lipopolysaccharide, which could be cleaved to yield a lipid A and an O-chain polysaccharide identified as a high molecular weight branched polymer of a tetrasaccharide repeating unit having the structure: (Formula: see text).  相似文献   

13.
Acidic O-specific polysaccharides were isolated on mild acidic degradation of lipopolysaccharides of Pseudomonas aeruginosa serotypes O4a,b, O4a,c, O4a,d (Lányi classification) and serologically related to them serotype O6 (Habs classification) and immunotype 1 (Fisher classification). The polysaccharides had identical monosaccharide composition and were built up of L-rhamnose, 2-acetamido-2,6-dideoxy-D-glucose,2-formamido-2-deoxy-D-galacturonic acid and 2-acetamido-2-deoxy-D-galactouronamide residues. The latter two derivatives of D-galactosaminuronic acid were found in nature for the first time. All the polysaccharides, but Lányi serotype O4a,c, contained O-acetyl groups. The polysaccharides were readily de-O-acetylated with aqueous triethylamine and de-N-formylated with dilute hydrochloric acid. De-N-formylated polysaccharide of serotype O4a,c was selectively cleaved with nitrous acid upon 2-amino-2-deoxygalacturonic acid residues to form a tetrasaccharide with a 2,5-anhydrotaluronic acid residue on the reducing end. The tetrasaccharide represented a modified repeating unit of the polysaccharide. Solvolysis of all intact polysaccharides with hydrogen fluoride selectively split the glycosidic linkages of 6-deoxy sugars to give the same trisaccharide, including both derivatives of galactosaminuronic acid and having 2-acetamido-2,6-dideoxyglucose on the reducing end. Structural investigation of the oligosaccharides obtained together with methylation analysis and 13C nuclear magnetic resonance data revealed the following structures of the O-specific polysaccharides: (Formula: see text) An independent confirmation of the structures of the repeating units was obtained as the result of full interpretation of the 13C nuclear magnetic resonance spectra of the intact and modified polymers. Spectral data analysis revealed a number of regularities in the effects of glycosidation connecting their values with the anomeric and absolute configuration of pyranose residues. The data on the structures of the O-specific polysaccharides indicated that each of the five P. aeruginosa strains under study should be considered as an individual O-serotype within one O-serogroup.  相似文献   

14.
The O-specific polysaccharide, obtained on mild acid degradation of lipopolysaccharide of Pseudomonas aeruginosa O13 (Lányi classification), is built up of trisaccharide repeating units involving 2-acetamidino-2,6-dideoxy-D-glucose (N-acetyl-D-quinovosamine, D-QuiNAc), 2-acetamidino-2,6-dideoxy-L-galactose (L-fucosacetamidine, L-FucAm), and a new sialic-acid-like sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-L-galacto-nonuloso n ic acid (Sug), and thus contains simultaneously both acidic and basic functions. Cleavage of the polysaccharide with hydrogen fluoride in methanol revealed the high stability of the glycosidic linkage of the ulosonic acid and afforded methyl glycosides of a disaccharide and a trisaccharide. The structures of the new ulosonic acid and acetamidino group were established by analysing the oligosaccharide fragments by 1H, 13C nuclear magnetic resonance spectrometry, as well as on the basis of their chemical conversions: alkaline hydrolysis of the acetamidino group into acetamido group, reductive deamination with lithium borohydride into the ethylamino group and acetylation with acetic anhydride in pyridine accompanied by intramolecular acylation of the acetamidino function by the ulosonic acid to form a six-membered lactam ring. Identification of the oligosaccharide fragments and comparative analysis of the 13C nuclear magnetic resonance spectra of the oligosaccharides and polysaccharide revealed the following structure of the repeating unit: ----3)D-QuiNAcp(alpha 1----3)Sugp(alpha 2----3)L-FucAmp(alpha 1----.  相似文献   

15.
The chemical structure of the K52 antigenic capsular polysaccharide (K52 antigen) of Escherichia coli O4:K52:H- was elucidated by composition, nuclear magnetic resonance spectroscopy, methylation, periodate oxidation before and after graded acid hydrolysis and by oligosaccharide analysis. The polysaccharide consists of a backbone of alpha-galactose units interlinked between C1 and C3 by phosphodiester bridges. This poly(alpha-galactosyl-phosphate) is substituted at C2 of each galactose unit by beta-fructofuranose residues. About 80% of the galactose units are O-acetylated at C4 and about 10% of the fructose units are both O-acetylated and O-propionylated at C1. The K52 polysaccharide has an average molecular mass of 34 kDa, thus consisting of approximately 65 fructosyl-galactosyl-phosphate repeating units.  相似文献   

16.
The phenol-phase soluble cellular lipopolysaccharide that was isolated by the phenol-water extraction from Haemophilus pleuropneumoniae serotype 2 was shown to be of the S type by sodium dodecyl sulfate--polyacrylamide gel electrophoresis, hydrolysis, methylation, specific degradations, and both one- and two-dimensional 1H and 13C nuclear magnetic resonance studies. It could be cleaved to yield a lipid A and an O-chain polysaccharide. This O-polysaccharide was identified as a high molecular weight unbranched linear polymer of a pentasaccharide repeating unit having the structure: (Formula: see text).  相似文献   

17.
The cellular lipopolysaccharide produced by Yersinia enterocolitica serotype O:5,27 was of the S-type and composed of an antigenic O-chain polysaccharide linked through a core oligosaccharide region, which in turn was linked through 3-deoxy-D-manno-octulonosyl units to a lipid A moiety. The O-chain polysaccharide was composed of equal molar amounts of L-rhamnose and D-xylulose. By partial hydrolysis, periodate oxidation, methylation, specific optical rotation, and 13C and 1H nuclear magnetic resonance studies, the structure of the O-chain was established as being a linear backbone of alternating 1,3-linked alpha-L-rhamnopyranosyl and beta-L-rhamnopyranosyl units, to which 2,2-linked beta-D-threo-pent-2-ulofuranoside (D-xylulofuranoside) units were present on every L-rhamnopyranosyl residue, as shown below. (Formula: see text)  相似文献   

18.
The antigenic O-polysaccharide of the lipopolysaccharide produced by Actinobacillus pleuropneumoniae serotype 14 was shown by chemical analysis and 1D and 2D nuclear magnetic resonance methods to be a high-molecular-mass polymer of a repeating disaccharide unit composed of a chain of (1-->5)-linked beta-D-galactofuranose (beta-D-Galf) residues substituted at their O-2 positions by alpha-D-galactopyranose residues (D-Galp) (1:1): [formula: see text].  相似文献   

19.
The specific capsular polysaccharide produced by Rhodococcus equi serotype 2 is a high-molecular-weight acidic polymer composed of D-glucose, D-mannose, D-glucuronic acid and 3-O-[(S)-1-carboxyethyl]-L-rhamnose in equimolar proportions. Structural analysis, employing a combination of chemical and n.m.r. techniques, established that the polysaccharide is composed of linear repeating tetrasaccharide units. (formula; see text) in which the beta-D-mannose residues carry O-acetyl groups at O-2 and O-3 to the extent of 1.7 mol equivalents. Unequivocal determination of the absolute chirality of the 3-O-[(S)-1-carboxyethyl]-alpha-L-rhamnose residues was achieved by chemical correlation with an authentic synthetic sample. The 1H and 13C-n.m.r. resonances of the native and O-deacetylated serotype 2 polysaccharides were fully assigned by homo- and heteronuclear chemical-shift correlation methods.  相似文献   

20.
The phenol-phase soluble lipopolysaccharide isolated from Escherichia coli 0:157 by the hot phenol-water extraction procedure was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, periodate oxidation, methylation, and 13C and 1H nuclear magnetic resonance studies to be an unbranched linear polysaccharide with a tetrasaccharide repeating unit having the structure: (formula; see text) The serological cross-reactivity of E. coli 0:157 with Brucella abortus, Yersinia enterocolitica (serotype 0:9), group N Salmonella, and some other E. coli species can be related immunochemically to the presence of 1,2-glycosylated N-acylated 4-amino-4, 6-dideoxy-alpha-D-mannopyranosyl residues in the O-chains of their respective lipopolysaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号