首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies found that isolates of Toxoplasma gondii from Brazil were biologically and genetically different from those in North America and Europe. However, to date only a small number of isolates have been analysed from different animal hosts in Brazil. In the present study DNA samples of 46 T. gondii isolates from cats in 11 counties in S?o Paulo state, Brazil were genetically characterised using 10 PCR restriction fragment length polymorphism markers including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico. An additional marker, CS3, that locates on chromosome VIIa and has previously been shown to be linked to acute virulence of T. gondii was also used to determine its association to virulence in mice. Genotyping of these 46 isolates revealed a high genetic diversity with 20 genotypes but no clonal Type I, II or III lineage was found. Two of the 46 isolates showed mixed infections. Combining genotyping data in this study with recent reported results from chickens, dogs and cats in Brazil (total 125 isolates) identified 48 genotypes and 26 of these genotypes had single isolates. Four of the 48 genotypes with multiple isolates identified from different hosts and locations are considered the common clonal lineages in Brazil. These lineages are designated as Types BrI, BrII, BrIII and BrIV. These results indicate that the T. gondii population in Brazil is highly diverse with a few successful clonal lineages expanded into wide geographical areas. In contrast to North America and Europe, where the Type II clonal lineage is overwhelmingly predominant, no Type II strain was identified from the 125 Brazil isolates. Analysis of mortality rates in infected mice indicates that Type BrI is highly virulent, Type BrIII is non-virulent, whilst Type BrII and BrIV lineages are intermediately virulent. In addition, allele types at the CS3 locus are strongly linked to mouse-virulence of the parasite. Thus, T. gondii has an epidemic population structure in Brazil and the major lineages have different biological traits.  相似文献   

2.
The prevalence of Toxoplasma gondii in free-ranging chickens is a good indicator of the prevalence of T. gondii oocysts in the soil because chickens feed from the ground. The prevalence of T. gondii antibodies in sera of 50 free-range chickens (Gallus domesticus) from Peru was 26% on the basis of the modified agglutination test (MAT). Hearts, pectoral muscles, and brains of seropositive (MAT > or =1:5) chickens were bioassayed individually in mice. Tissues from the remaining 37 seronegative chickens were pooled and fed to 2 T. gondii-free cats. Feces of cats were examined for oocysts; they did not shed oocysts. Toxoplasma gondii was isolated from the hearts of 10 seropositive chickens but not from their brains and pectoral muscles. Genotyping of these isolates using the SAG2 locus indicated that 7 isolates were type I and 3 were type III. Six of the 7 type-I isolates were avirulent for mice, which was unusual because type-I isolates are considered virulent for mice. The T. gondii isolates were from chickens from different properties that were at least 200 m apart. Thus, each isolate is likely to be different. This is the first report of isolation of T. gondii from chickens from Peru.  相似文献   

3.
The prevalence of Toxoplasma gondii in free-ranging chickens (Gallus domesticus) is a good indicator of the prevalence of T. gondii oocysts in the soil because chickens feed from the ground. In the present study, prevalence of T. gondii in chickens from Democratic Republic of Congo, Mali, Burkina Faso, and Kenya is reported. The prevalence of T. gondii antibodies in sera of 50 free-range chickens from Congo was 50% based on the modified agglutination test (MAT); antibody titers were 1:5 in 7, 1:10 in 7, 1:20 in 6, 1:40 in 1, and 1:160 or more in 4 chickens. Hearts, pectoral muscles, and brains of 11 chickens with titers of 1:20 or more were bioassayed individually in mice; T. gondii was isolated from 9, from the hearts of 9, brains of 3, and muscles of 3 chickens. Tissues of each of the 14 chickens with titers of 1:5 or 1:10 were pooled and bioassayed in mice; T. gondii was isolated from 1 chicken with a titer of 1:10. Tissues from the remaining 25 seronegative chickens were pooled and fed to 1 T. gondii-free cat. Feces of the cat were examined for oocysts, but none was seen. The results indicate that T. gondii localizes in the hearts more often than in other tissues of naturally infected chickens. Genotyping of these 10 isolates using the SAG2 locus indicated that 8 were isolates were type III, 1 was type II, and 1 was type I. Two isolates (1 type I and 1 type III) were virulent for mice. Toxoplasma gondii was isolated by mouse bioassay from a pool of brains and hearts of 5 of 48 chickens from Mali and 1 of 40 chickens from Burkina Faso; all 6 isolates were avirulent for mice. Genetically, 4 isolates were type III and 2 were type II. Sera were not available from chickens from Mali and Burkina Faso. Toxoplasma gondii antibodies (MAT 100 or more) were found in 4 of 30 chickens from Kenya, and T. gondii was isolated from the brain of 1 of 4 seropositive chickens; this strain was avirulent for mice and was type II. This is the first report on isolation and genotyping of T. gondii from any source from these 4 countries in Africa.  相似文献   

4.
In spite of a wide host range and a world wide distribution, Toxoplasma gondii has a low genetic diversity. Most isolates of T. gondii can be grouped into two to three lineages. Type I strains are considered highly virulent in outbred laboratory mice, and have been isolated predominantly from clinical cases of human toxoplasmosis whereas types II and III strains are considered avirulent for mice. In the present study, 17 of 25 of the T. gondii isolates obtained from asymptomatic chickens from rural areas surrounding S?o Paulo, Brazil were type I. Antibodies to T. gondii were measured in 82 chicken sera by the modified agglutination test using whole formalin-preserved tachyzoites and mercaptoethanol and titres of 1:10 or more were found in 32 chickens. Twenty-two isolates of T. gondii were obtained by bioassay in mice inoculated with brains and hearts of 29 seropositive (> or =1:40) chickens and three isolates were obtained from the faeces of cats fed tissues from 52 chickens with no or low levels (<1:40) of antibodies. In total, 25 isolates of T. gondii were obtained by bioassay of 82 chicken tissues into mice and cats. All type I isolates killed all infected mice within 4 weeks whereas type III isolates were less virulent to mice. There were no type II strains. Tissue cysts were found in mice infected with all 25 isolates and all nine type I isolates produced oocysts. Infected chickens were from localities that were 18-200 km apart, indicating no common source for T. gondii isolates. This is the first report of isolation of predominantly type I strains of T. gondii from a food animal. Epidemiological implications of these findings are discussed.  相似文献   

5.
The prevalence of Toxoplasma gondii, in free-ranging chickens is a good indicator of the prevalence of T. gondii oocysts in the soil because chickens feed from the ground. The prevalence of T. gondii in 46 free-range chickens (Gallus domesticus) from Venezuela was determined. Antibodies to T. gondii were assayed by the modified agglutination test (MAT). Antibodies were found in 16 (32%) chickens with titers of 1:5 in 1, 1:10 in 2, 1:40 in 2, 1:80 in 2, 1:160 in 2, 1:320 in 3, 1: 640 in 2, and 1:1,280 or higher in 2. Hearts, pectoral muscles, and brains of 13 chickens with MAT titers of 1:40 or more were bioassayed individually in mice. Tissues of each of 3 chickens with titers of 1:5 or 1:10 were pooled and bioassayed in mice. Tissues from the remaining 30 seronegative chickens were pooled and fed to 1 T. gondii-free cat. Feces of the cat were examined for oocysts; it did not shed oocysts. Toxoplasma gondii was isolated from 12 of 13 chickens with MAT titers of 1:40 or more. Toxoplasma gondii was isolated from pooled tissues of 1 of 2 chickens with titers of 1:10. Eight of these 13 isolates were virulent for mice. Genotyping of 13 of these isolates using the SAG2 locus indicated that 10 were type III, and 3 were type II. Phenotypically and genetically these isolates were different from T. gondii isolates from North America and Brazil. This is the first report of isolation of T. gondii from chickens from Venezuela.  相似文献   

6.
The prevalence of Toxoplasma gondii in free-ranging chickens is a good indicator of the prevalence of T. gondii oocysts in the soil because chickens feed from the ground. The prevalence of T. gondii in 61 free-range chickens (Gallus domesticus) from provinces of Santiago del Estero and Entre Rios, Argentina was determined. Antibodies to T. gondii were assayed by the modified agglutination test (MAT) and were found in 25 chickens; titers were 1:5 in 6 chickens, 1:10 in 1 chicken, 1:20 in 2 chickens, 1:40 in 1 chicken, 1:80 in 2 chickens, 1:60 in 4 chickens, 1:120 in 2 chickens, 1:640 in 3 chickens, and 1: 1,280 or higher in 4 chickens. Hearts, pectoral muscles, and brains of 22 seropositive (MAT 1:10 or higher) chickens were bioassayed individually in mice. Tissue from 39 chickens with titers of 1:5 or less were pooled and fed to 3 T. gondii-free cats. Feces of cats were examined for oocysts, but none was found. Toxoplasma gondii was isolated from 17 of 22 chickens with MAT titers of 1:10 or higher. Genotyping of these 17 isolates using polymorphisms at the SAG2 locus indicated that 4 were Type I, 3 were Type II, and 10 were Type III. Toxoplasma gondii isolates (2 Type I and I Type III) from 3 chickens were virulent for mice and 1 Type I was not mouse virulent. Prevalence of T. gondii antibodies in chickens varied among regions, being 3 times greater in the humid Pampeana region (61.2%) than in the semiarid plain of Santiago del Estero (20%).  相似文献   

7.
The prevalence of Toxoplasma gondii in free-ranging chickens is a good indicator of the presence of T. gondii oocysts in the environment because chickens feed from the soil. In the present study, prevalence of T. gondii in 208 free-range chickens (Gallus domesticus) from Mexico was investigated. Blood, heart, and brain from each animal were obtained to test for T. gondii infection. Antibodies to T. gondii, assayed with the modified agglutination test (1:10 or higher), were found in 13 (6.2%) chickens. Hearts and brains of 13 seropositive chickens were bioassayed in mice, and T. gondii was isolated from 6 chickens. All 6 isolates were avirulent for mice. Genotyping of chicken isolates of T. gondii using the SAG2 locus indicated that 5 were type III and 1 was type I. This is the first report of isolation of T. gondii from chickens from Mexico.  相似文献   

8.
Randomly amplified polymorphic DNA (RAPD) analysis of 35 Paracoccidioides brasiliensis isolates was carried out to evaluate the correlation of RAPD profiles with the virulence degree or the type of the clinical manifestations of human paracoccidioidomycosis. The dendrogram presented two main groups sharing 64% genetic similarity. Group A included two isolates from patients with chronic paracoccidioidomycosis; group B comprised the following isolates showing 65% similarity: two non-virulent, six attenuated, five virulent, eight from patients with chronic paracoccidioidomycosis and two from patients with acute paracoccidioidomycosis. The virulent Pb18 isolate and six attenuated or non-virulent samples derived from it were genetically indistinguishable (100% of similarity). Thus, in our study, RAPD patterns could not discriminate among 35 P. brasiliensis isolates according to their differences either in the degree of virulence or in the type of the clinical manifestation of this fungal infection.  相似文献   

9.
The prevalence of Toxoplasma gondii in free-ranging chickens (Gallus domesticus) is a good indicator of the prevalence of the parasite's oocysts in soil because chicken feed from the ground. The prevalence of T. gondii in free-range chickens from Ghana, Indonesia, Italy, Poland, and Vietnam was determined using the modified agglutination test (MAT). Antibodies to T. gondii were found in 41 (64%) of 64 chickens from Ghana, 24 (24.4%) of 98 chickens from Indonesia, 10 (12.5%) of 80 chickens from Italy, 6 (30%) of 20 chickens from Poland, and 81 (24.2%) of 330 chickens from Vietnam. Hearts and brains of chickens were bioassayed for T. gondii. Viable T. gondii was isolated from 2 chickens from Ghana, 1 chicken from Indonesia, 3 chickens from Italy, 2 chickens from Poland, and 1 chicken from Vietnam. Toxoplasma gondii isolates from 9 chickens were genotyped using 10 PCR-RFLP markers including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico. A total of 7 genotypes was identified; the 3 isolates from chickens from Italy were clonal type II, and the others were nonclonal. This is the first report of genetic characterization of T. gondii isolates from animals from these countries.  相似文献   

10.
The prevalence of Toxoplasma gondii in free-ranging chickens is a good indicator of the prevalence of T. gondii oocysts in the soil because chickens feed from the ground. The prevalence of T. gondii in 225 free-range chickens (Gallus domesticus) from Portugal was determined. Antibodies to T. gondii were assayed by the modified agglutination test (MAT) and found in 61 chickens with titers of 1:5 in 8, 1:10 in 6, 1:20 in 3, 1:40 in 23, 1:80 in 5, 1:160 in 4, 1:320 in 8, and 1:640 or higher in 4. Hearts, leg muscles, and brains of 15 seropositive (MAT 1:10 or higher) chickens were bioassayed individually in mice. Tissue from 38 chickens with titers of 1:5 or less were pooled and fed to a T. gondii-free cat. Feces of the cat were examined for oocysts, but none was found. Toxoplasma gondii was isolated from 16 of 19 chickens with MAT titers of 1:10 or higher. Genotyping of 12 of these 16 isolates with polymorphisms at the SAG2 locus indicated that 4 were type III, and 8 were type II. None of the isolates was lethal for mice. Phenotypically, T. gondii isolates from chickens from Portugal were different from those of T. gondii isolates from chickens from Brazil.  相似文献   

11.
Prevalence of Toxoplasma gondii infection in chickens is a good indicator of the strains prevalent in their environment because they feed from ground. The prevalence of T. gondii was determined in 118 free-range chickens from 14 counties in Ohio and in 11 chickens from a pig farm in Massachusetts. Toxoplasma gondii antibodies (> or = 1: 5) were found using the modified agglutination test (MAT) in 20 of 118 chickens from Ohio. Viable T. gondii was recovered from 11 of 20 seropositive chickens by bioassay of their hearts and brains into mice. The parasite was not isolated from tissues of 63 seronegative (< or = 1:5) chickens by bioassay in cats. Hearts, brains, and muscles from legs and breast of the 11 chickens from the pig farm in Massachusetts were fed each to a T. gondii-negative cat. Eight cats fed chicken tissues shed oocysts; the 3 cats that did not shed oocysts were fed tissues of chickens with MAT titers of 1:5 or less. Tachyzoites of 19 isolates of T. gondii from Ohio and Massachusetts were considered avirulent for mice. Of 19 isolates genotyped, 5 isolates were type II and 14 were type III; mixed types and type I isolates were not found.  相似文献   

12.
The prevalence of Toxoplasma gondii in free-ranging chickens can be considered a good indicator of the prevalence of T. gondii oocysts in the environment because chickens feed from the ground. In the present study, prevalence of T. gondii in 29 free-range chickens (Gallus domesticus) from Argentina was investigated. Blood, heart, and brain from each chicken were examined for T. gondii infection. Antibodies to T. gondii, assayed with the modified agglutination test (MAT), were found in 19 of 29 (65.5%) chickens. Hearts and brains of seropositive (MAT > or = 1:5) chickens were bioassayed in mice. Toxoplasma gondii was isolated from 9 of 19 seropositive chickens. Genotyping of chicken isolates of T. gondii using the SAG2 locus indicated that 1 was type I, 1 was type II, and 7 were type III. This is the first report of isolation of T. gondii from chickens from Argentina.  相似文献   

13.
Little is known concerning the epidemiology of Toxoplasma gondii infection in people and animals in rural Mexico. Serum samples and tissues from 150 dogs (Canis familaris), 150 cats (Felis catus), 65 opossums (Didelphis virginianus), 249 rats (Rattus spp.), 127 mice (Mus musculus), and 69 squirrels (Spermophilus variegatus) from the Durango area were evaluated for T. gondii infection. Using a modified agglutination test and a serum dilution of 1:25, antibodies to this parasite were found in 68 (45.3%) of 150 dogs, 14 (9.3%) of 150 cats, 11 (16.6%) of 66 opossums, 2 (0.8%) of 249 rats, 4 (3.1%) of 127 mice, and 0 of 69 squirrels. Tissues (brain and heart) of dogs, cats, opossums, rats, mice, and squirrels were bioassayed in mice for the presence of T. gondii. Viable T. gondii was isolated in tissues from 3 of 28 seropositive dogs and 5 of 8 seropositive cats, but not from the other animals. The DNA obtained from the 3 T. gondii isolates from dogs, 6 isolates from 5 cats, and 4 isolates from free-range chickens from Mexico, previously isolated, were genotyped. The PCR-RFLP typing, which used 11 markers (B 1, SAGI, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico), identified 5 genotypes. One genotype (the 4 chicken isolates) belongs to the clonal Type III lineage, three genotypes were reported in previous reports, and 1 genotype is unique.  相似文献   

14.
The prevalence of Toxoplasma gondii in free-range chickens is a good indicator of the prevalence of T. gondii oocysts in the soil because chickens feed from the ground. The prevalence of T. gondii in 102 free-range chickens (Gallus domesticus) from Grenada was determined. Antibodies to T. gondii were assayed by the modified agglutination test (MAT). Antibodies were found in 53 (52%) chickens with titers of 1:5 in 6, 1:10 in 4, 1:20 in 4, 1:40 in 4, 1:80 in 15, 1:160 in 9, 1: 320 in 5, 1:640 in 4, and 1:1,280 or greater in 2. Hearts, pectoral muscles, and brains of 43 seropositive chickens with MAT titers of 1:20 or greater were bioassayed individually in mice. Tissues of each of 10 chickens with titers of 1:5 and 1:10 were pooled and bioassayed in mice. Tissues from the remaining 49 seronegative chickens were pooled and fed to 4 T. gondii-free cats. Feces of cats were examined for oocysts; they did not shed oocysts. T. gondii was isolated from 35 of 43 chickens with MAT titers of 1:20 or greater; from the hearts, brains, and pectoral muscles of 2, hearts and brains of 20, from the hearts alone of 11, and brains alone of 2. T. gondii was isolated from 1 of 10 chickens with titers of 1:5 or 1:10. All 36 T. gondii isolates were avirulent for mice. Genotyping of these 36 isolates using polymorphisms at the SAG2 locus indicated that 29 were Type III, 5 were Type I, 1 was Type II, and 1 had both Type I and Type III. Genetically, the isolates from Grenada were different from those from the United States; Type II was the predominant type from the United States. Phenotypically, all isolates from Grenada were avirulent for mice, whereas those from Brazil were mouse-virulent. This is the first report of isolation of T. gondii from chickens from Grenada, West Indies.  相似文献   

15.
The prevalence of Toxoplasma gondii in free-ranging chickens is a good indicator of the prevalence of T. gondii oocysts in the soil because chickens feed from the ground. The prevalence of T. gondii in 100 free-range chickens (Gallus domesticus) from Sri Lanka was determined. Antibodies to T. gondii were assayed by the modified agglutination test (MAT). Antibodies were found in 39 chickens with titers of 1:5 in 8, 1:10 in 8, 1:20 in 4, 1:40 in 5, 1:80 in 5, 1:160 in 5, 1:320 in 2, 1:640 or more in 2. Hearts and brains of 36 chickens with MAT titers of 1:5 or more were bioassayed in mice. Tissues of 3 chickens with doubtful titers of 1:5 were pooled and fed to a cat; the cat shed T. gondii oocysts in its feces. Tissues from 61 chickens with titers of less than 1:5 were pooled and fed to 2 T. gondii-free cats; the cats did not shed oocysts. Toxoplasma gondii was isolated from 11 of 36 seropositive chickens by bioassay in mice. All 12 T. gondii isolates were avirulent for mice. Genotyping of 12 isolates using the SAG2 locus indicated that 6 were type III, and 6 were type II. This is the first report of genetic characterization of T. gondii from any host in Sri Lanka.  相似文献   

16.
The prevalence of Toxoplasma gondii in free-ranging chickens is a good indicator of the prevalence of T. gondii oocysts in the soil because chickens feed from the ground. The prevalence of T. gondii in 50 free-range chickens (Gallus domesticus) from Amazon, Brazil, was determined. Antibodies to T. gondii were assayed by the modified agglutination test (MAT) and found in 33 (66%) chickens with titers of 1:5 in 3, 1:10 in 2, 1:20 in 1, 1:40 in 1, 1:80 in 2, 1:160 in 5, 1:200 in 9, 1:400 in 5, 1:800 in 2, 1:1,600 in 2, and 1:3,200 or higher in 1. Hearts and brains of 33 seropositive chickens were bioassayed individually in mice. Tissues from 17 seronegative chickens were pooled and fed to 2 T. gondii-free cats. Feces of cats were examined for oocysts, but none was found. Toxoplasma gondii was isolated from 24 chickens with MAT titers of 1:5 or higher. Genotyping of these 24 T. gondii isolates by polymorphisms at the SAG2 locus indicated that 14 were type I, and 10 were type III; the absence of type II strains from Brazil was confirmed. Fifty percent of the infected mice died of toxoplasmosis, irrespective of the genotype.  相似文献   

17.
The prevalence of Toxoplasma gondii in free-ranging chickens is a good indicator of the prevalence of T. gondii oocysts in the soil because chickens feed from the ground. The prevalence of T. gondii in 50 free-range chickens (Gallus domesticus) from Guatemala was determined. Antibodies to T. gondii were assayed by the modified agglutination test (MAT). Antibodies were found in 37 (74%) chickens with titers of 1:5 (11), 1:10 (7), 1:20 (11), 1:40 (1), 1:80 (1), 1:160 (3), 1:1,280 (2), and 1:2,560 (1). Hearts, pectoral muscles, and brains of 19 chickens with MAT titers of 1:20 or more were bioassayed individually in mice. Tissues from the remaining 31 chickens with titers of 1:10 or lower were pooled and fed to 4 T. gondii-free cats (13 chickens with titers of less than 1:5 to 1 cat, 11 chickens with titers of 1:5 to 2 cats, and 7 chickens with titers of 1:10 to 1 cat). Feces of cats were examined for oocysts; they did not shed oocysts. Toxoplasma gondii was isolated from 8 chickens with MAT titers of 1:20 or more (from 1 of 11 chickens with a titer of 1:20 and all 7 chickens with a titer of 1:80 or more) from the heart, brain, and pectoral muscle (3); heart and pectoral muscle (1); and heart alone (4). Genotyping of these 8 isolates with the SAG2 locus indicated that 5 were type III and 3 were type 1. This is the first report of isolation of T. gondii from chickens from Guatemala.  相似文献   

18.
The prevalence of Toxoplasma gondii in free-ranging chickens is a good indicator of the prevalence of T. gondii oocysts in the soil because chickens feed from the ground. The prevalence of T. gondii in 152 free-range chickens (Gallus domesticus) from 22 municipalities in 7 northeastern states (Pernambuco, Rio Grande do Norte, Maranh?o, Bahia, Ceará, Sergipe, and Alagoas) of Brazil was determined. Antibodies to T. gondii were assayed by the modified agglutination test (MAT); 81 (53.3 %) chickens had titers of 1:5 in 26, 1:10 in 9, 1:20 in 4, 1:40 in 1, 1:80 in 6, 1:160 in 6, 1:320 in 13, 1:640 in 6, 1:1,280 in 3, 1:2,560 in 6, and 1:5,120 or higher in 1. Hearts and brains of 81 seropositive chickens were bioassayed individually in mice. Toxoplasma gondii was isolated from 23 chickens with MAT titers of 1:5 or higher; the isolates were designated TgCKBr165-187. Five isolates killed all infected mice. Results indicate widespread contamination of rural environment in Brazil with T. gondii oocysts.  相似文献   

19.
Toxoplasma gondii isolates can be grouped into 3 genetic lineages. Type I isolates are considered more virulent in outbred mice and have been isolated predominantly from clinical cases of human toxoplasmosis, whereas types II and III isolates are considered less virulent for mice and are found in humans and food animals. Little is known of genotypes of T. gondii isolates from wild animals. In the present report, genotypes of isolates of T. gondii from wildlife in the United States are described. Sera from wildlife were tested for antibodies to T. gondii with the modified agglutination test, and tissues from animals with titers of 1:25 (seropositive) were bioassayed in mice. Toxoplasma gondii was isolated from the hearts of 21 of 34 seropositive white-tailed deer (Odocoileus virginianus) from Mississippi and from 7 of 29 raccoons (Procyon lotor); 5 of 6 bobcats (Lynx rufus); and the gray fox (Urocyon cinereoargenteus), red fox (Vulpes vulpes), and coyote (Canis latrans) from Georgia. Toxoplasma gondii was also isolated from 7 of 10 seropositive black bears (Ursus americanus) from Pennsylvania by bioassay in cats. All 3 genotypes of T. gondii based on the SAG2 locus were circulating among wildlife.  相似文献   

20.
The prevalence of Toxoplasma gondii was investigated on a poorly managed pig farm in Maryland. Serum and tissue samples from 48 of the 100 pigs on the farm were available for T. gondii evaluation. Serological testing was performed using both ELISA and the modified agglutination test (MAT). Antibodies to T. gondii were detected by ELISA in 12 of 48 animals, while antibodies were detected in 34 of 48 pigs by MAT with titers of 1:10 in 1, 1:20 in 4, 1:40 in 7, 1:80 in 3, 1:160 in 8, 1:320 in 3, 1:640 in 4, and 1:1,280 in 4. Hearts of 16 pigs with MAT titers of 1:10 or higher were bioassayed for T. gondii in cats; 11 cats shed T. gondii oocysts. Hearts of 22 pigs were autolyzed and bioassayed only in mice; T. gondii was isolated from 3 of these 22 pigs. Genetic typing of the 14 T. gondii isolates using the SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico loci revealed 4 genotypes; 10 isolates belonged to type II lineage (genotypes 1 and 2), 3 belonged to genotype 3, and 1 belonged to genotype 4. Genotype 1 and 2 have type II alleles at all genetic loci, except the former has type II allele and the latter has a type I allele at locus Apico. Both genotypes 1 and 2 are considered to belong to the clonal type II lineages. Genotype 3 and 4 are nonclonal isolates. Results document high prevalence of T. gondii in pigs on a farm in Maryland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号