首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apramycin-modifying strains isolated from pigs with coli bacteriosis, from humans and hospital environment were studied comparatively. Production of enzymes modifying the aminoglycoside was estimated with the radioactive cofactor procedure. E. coli isolates from the animals were phenotypically resistant to apramycin and a number of other aminoglycosides. They produced acetyltransferase AAC(3)IV, phosphotransferase APH(3')(5"), APH(3") and other enzymes. Resistance of the strains to gentamicin was also conditioned by AAC(3)IV since these strains did not produce AAD(2") and AAC(6'). In the resistant strains of E. coli and their transconjugates there were detected plasmids with a relative molecular weight of 60-80 MD. Some of the belonged to the compatibility group I1, the others belonged to the compatibility group H1. Strains of S. marcescens, K. pneumoniae. K. oxytoca and S. aureus isolated from humans and hospital environment were sensitive to apramycin. Only isolates of P. aeruginosa were resistant to this antibiotic. However, all the isolates produced AAC(3)IV. Some of them additionally produced AAC(6'), an enzyme modifying amikacin, kanamycin and other antibiotics and not acetylating apramycin. Almost all the strains produced kanamycin- and streptomycin phosphotransferases. Possible coselection of strains resistant to apramycin and gentamicin using one of these aminoglycosides is discussed.  相似文献   

2.
A transposon, Tn733, encoding the gentamicin acetyltransferase AAC(3) was found on two gentamicin R plasmids of IncW at Hammersmith Hospital. Transposon TN733 has a molecular mass of 5.8 megadaltons and gives a characteristic 2.4 megadalton fragment on digestion with EcoRI. The appearance of gentamicin resistance on a transposon will increase the chances of spread of this gene.  相似文献   

3.
We have examined the relationship between Inc 7-M plasmids conferring resistance to gentamicin by synthesis of an acetylating enzyme (AAC(3)) and other plasmids of the same incompatibility group by agarose gel electrophoresis following digestion with restriction endonucleases and by nucleic acid hybridization. Although isolated from different bacterial hosts over a 6-year period of time the three plasmids mediating acetylation of gentamicin are very similar. They are related to, but distinct from the other Inc 7-M plasmids. The in vivo evolution of these plasmids appeared modular, involving sequential deletions and stepwise acquisition of transposons (Tn6, Tn7, and a Tn9-like element). These results are in favor of a plasmid epidemic and indicate a great stability of the transfer factor part of these plasmids under natural conditions.  相似文献   

4.
5.
Aminoglycoside resistance patterns of 56 strains isolated from man, cattle and environment were determined. 34 out of 42 gentamicin-resistant strains were shown to produce AAC(3)-II and 7 strains produced ANT(2"). All the 48 kanamycin resistant strains produced APH(3')-I. Spot hybridization of the 42 gentamicin resistant strains with the inner fragment of the aacC2 gene revealed positive signals for all the strains. Hybridization of the 48 kanamycin-resistant strains with the aphA1 gene probe provided positive results in all the strains. The AAC(3)-IV encoding gene was not detected by DNA-DNA hybridization in the strains studied.  相似文献   

6.
The study of the mechanisms of aminoglycoside resistance in gramnegative pathogens of nosocomial infections in 14 hospitals of Russia showed that the basic mechanism was production of aminoglycoside modifying enzymes, mainly adenylyl transferase ANT(2"), acetyl transferases AAC(3)-V and ACC(6)-I, and phosphotransferases APH(3')-I and APH(3')-VI. In all the hospitals enzymes modifying gentamicin and tobramycin were wide spread while the resistance phenotypes to aminoglycosides were different in separate hospitals. Isepamycin proved to be the most active aminoglycoside. Recommendations for the use of antibiotics in hospital formulas and empiric therapy should be developed on the basis of the local specific features of the resistance in nosocomial pathogens to aminoglycosides.  相似文献   

7.
The 2.3-kb Hind-III fragment containing the gentamicin resistance aacC2 gene was cloned from a clinical strain of E. coli with the aminoglycoside resistance pattern indicative of ++aminoglycoside acetyltransferase AAC (3)-II. An approach based on the phenomenon of the replicon dissociation of high molecular weight plasmids was applied. The restriction map of the cloned fragment was constructed. It was shown by subcloning the fragment that the aacC2 gene was localized within the 1.1-kb Alu I-Sal I fragment.  相似文献   

8.
The aim of the study was to evaluate the aminoglycoside resistance of Gram-negative bacilli isolated from patients. To the examination 35 strains of Enterobacteriaceae and 18 of non-fermentative bacteria were included. Resistance to aminoglycosides (gentamicin (G), netilmicin (Nt), tobramycin (T), amikacin (A), kanamycin (K), neomycin (N)) was established by disk diffusion method. Interpretation of enzymatic mechanisms was performed by Livermore. The most common enzymes AAC(6')I were found in Enterobacteriaceae group (mostly in E. cloaceae and P. mirabilis) and AAC(3') and in non-fermentative bacteria: AAC(6')I in P. aeruginosa and APH(3')VI and AAC(3')I in A. baumanii. The most frequent phenotype was resistance to six antibiotics (G, Nt, T, A, K, N) Resistance rates were high for gentamicin (>70 %) in both groups and amikacin (88,89 %) in non-fermentatives.  相似文献   

9.
The prevalence of resistance to high levels of gentamicin among 182 isolates of Enterococcus faecalis from 2 Iranian hospitals was 42%. Gentamicin resistance was associated with conjugative plasmids (>70 kb) in most strains. Fingerprinting using EcoRI and HindIII showed genetic variation among these plasmids and gave evidence of nosocomial outbreaks and persistence of infection in different wards of the study hospitals, as well as transfer of plasmids between genetically diverse isolates. Using EcoRI, hospital-based specific plasmid fingerprints were detected for the isolates that had previously proved to be unrelated by multilocus enzyme electrophoresis, suggesting the persistence of related plasmids at each hospital, though minor changes in these related plasmids could be detected with HindIII.  相似文献   

10.
The mechanisms of resistance to apramycin of five isolates of Escherichia coli from animals were investigated. Three isolates, which were resistant to all the aminoglycosides tested, did not transfer their resistance and did not produce aminoglycoside-modifying enzymes. The fourth isolate, which was resistant to apramycin, tobramycin, gentamicin, kanamycin and neomycin but not to amikacin, owed its resistance to production of the acetyltransferase AAC(3)IV. The gene specifying this enzyme was carried on a transposon, Tn800, on a plasmid designated R1535. The fifth isolate was resistant to apramycin, neomycin and kanamycin but not to gentamicin, tobramycin or amikacin. It produced an acetyltransferase that readily acetylated only apramycin, neomycin and paromomycin, a compound that is closely related to neomycin. Synthesis of this enzyme was specified by a chromosomal gene located near pyrD at about 20 min on the map of the E. coli K12 chromosome.  相似文献   

11.
The aminoglycoside 6'-N-acetyltransferase [AAC(6')-I] and AAC(6')-II enzymes represent a class of bacterial proteins capable of acetylating tobramycin, netilmicin, and 2'-N-ethylnetilmicin. However, an important difference exists in their abilities to modify amikacin and gentamicin. The AAC(6')-I enzymes are capable of modifying amikacin. In contrast, the AAC(6')-II enzymes are capable of modifying gentamicin. Nucleotide sequence comparison of the aac(6')-Ib gene and the aac(6')-IIa gene showed 74% sequence identity (K. J. Shaw, C. A. Cramer, M. Rizzo, R. Mierzwa, K. Gewain, G. H. Miller, and R. S. Hare, Antimicrob. Agents Chemother. 33:2052-2062, 1989). Comparison of the deduced protein sequences showed 76% identity and 82% amino acid similarity. A genetic analysis of these two proteins was initiated to determine which amino acids were responsible for the differences in specificity. Results of domain exchanges, which created hybrid AAC(6') proteins, indicated that amino acids in the carboxy half of the proteins were largely responsible for determining specificity. Mutations shifting the specificity of the AAC(6')-Ib protein to that of the AAC(6')-IIa protein (i.e., gentamicin resistance and amikacin sensitivity) have been isolated. DNA sequence analysis of four independent isolates revealed base changes causing the same amino acid substitution, a leucine to serine, at position 119. Interestingly, this serine occurs naturally at the same position in the AAC(6')-IIa protein. Oligonucleotide-directed mutagenesis was used to construct the corresponding amino acid change, a serine to leucine, in the AAC(6')-IIa protein. This change resulted in the conversion of the AAC(6')-IIa substrate specificity to that of AAC(6')-Ib. Analysis of additional amino acid substitutions within this region of AAC(6')-Ib support the model that we have identified an aminoglycoside binding domain of these proteins.  相似文献   

12.
A third ADP/ATP translocator gene in yeast   总被引:14,自引:0,他引:14  
The op1 mutation in yeast is known to be due to a defect in the mitochondrial ADP/ATP translocator. Sequencing of the gene AAC2 revealed that the mutation resulted from a single base change that caused a replacement of arginine 97 by a histidine. The gene encoding AAC2 was also cloned and sequenced from an op1 revertant capable of growth on glycerol as a sole carbon source. Sequence analysis indicates that the reverted gene underwent rearrangement in which a portion of an unknown gene was used to repair the mutation. An oligonucleotide complementary to this insert was used to clone a previously unrecognized gene encoding ADP/ATP translocator in yeast. The newly discovered gene, AAC3, is homologous with the previously known genes AAC1 and AAC2. Gene disruption experiments suggest that AAC2 encodes the majority of the translocator. Expression of AAC1 and AAC2 required derepressed conditions whereas expression of AAC3 occurred almost exclusively under anaerobic conditions. Both the op1 mutant and the strain that contains an interrupted AAC2 were able to grow under anaerobic conditions, suggesting that AAC3 can replace the gene product of AAC2. Indeed, when cloned into multicopy plasmid, AAC3 was able to replace the disrupted AAC2 in the JLY-73 strain. The concomitant disruption of the AAC2 and AAC3, however, results in arrest of cell growth under conditions of low oxygen tension. The discovery of a third gene encoding ADP/ATP translocator helps to clarify certain characteristics of op1 mutants which could not be resolved in the past.  相似文献   

13.
The levels and spectra of drug resistance were determined in 530 strains of P. aeruginosa isolated in hospitals of three cities of the USSR within 1979-1984. Their conjugative R plasmids were searched for and distribution of various type resistance determinants in the composition of these plasmids was investigated. The results were compared with the findings of analogous studies on clinical strains of P. aeruginosa isolated within 1976-1979. It was shown that there were a rise in the relative number of the strains resistant to kanamycin and a decrease in the occurrence of the P. aeruginosa strains resistant to streptomycin, tetracycline and sulfanilamides. The frequency of the kanamycin, carbenicillin and gentamicin resistance genes in the composition of the detected conjugative R plasmids increased. Hybridization of 32P-labeled probes containing various type antibiotic resistance determinants with strains of P. aeruginosa ML (PAO) containing conjugative R plasmids was indicative of wide spread of genes determining APH(3')II and APH(3") and determinants of classes A and C in the composition of the studied plasmids.  相似文献   

14.
Abstract Resistance to apramycin due to production of a 3-aminoglycoside acetyltransferase type IV (AAC(3)IV) has recently been detected among Gram-negative bacteria isolated in France from bovine clinical samples. 24 apramycin-resistant Escherichia coli strains isolated over the country, and epidemiologically unrelated, were studied by colony hybridization using an intragenic probe specific for AAC(3)IV. The results obtained indicated that the structural gene for the acetyltransferase was present in all the isolates tested and in the corresponding apramycin-resistant transconjugants. This observation demonstrates that resistance to apramycin by acetylation of the antibiotic has spread very rapidly in bovine Gram-negative bacteria.  相似文献   

15.
The relationship between the acetylation of peptidoglycan and that of aminoglycosides in Providencia stuartii has been investigated both in vivo and in vitro. Adaptation of the assay for peptidoglycan N-->O-acetyltransferase permitted an investigation of the use of peptidoglycan as a source of acetate for the N acetylation of aminoglycosides by gentamicin N-acetyltransferase [EC 2.3.1.59; AAC(2')]. The peptidoglycan from cells of P. stuartii PR50 was prelabelled with 3H by growth in the presence of N-[acetyl-3H]glucosamine. Under these conditions, [3H]acetate was confirmed to be transferred to the C-6 position of peptidoglycan-bound N-acetylmuramyl residues. Isolated cells were subsequently incubated in the presence of various concentrations of gentamicin and tobramycin (0 to 5x MIC). Analysis of various cellular fractions from isolated cells and spent culture medium by the aminoglycoside-binding phosphocellulose paper assay revealed increasing levels of radioactivity associated with the filters used for whole-cell sonicates of cells treated with gentamicin up to 2 x MIC. Beyond this concentration, a decrease in radioactivity was observed, consistent with the onset of cell lysis. Similar results were obtained with tobramycin, but the increasing trend was less obvious. The transfer of radiolabel to either aminoglycoside was not observed with P. stuartii PR100, a strain that is devoid of AAC(2')-Ia. A high-performance anion-exchange chromatography-based method was established to further characterize the AAC(2')-Ia-catalyzed acetylation of aminoglycosides. The high-performance liquid chromatography (HPLC)-based method resolved a tobramycin preparation into two peaks, both of which were collected and confirmed by 1H nuclear magnetic resonance to be the antibiotic. Authentic standards of 2'-N-acetyltobramycin were prepared and were well separated from the parent antibiotic when subjected to the HPLC analysis. By applying this technique, the transfer of radiolabelled acetate from the cell wall polymer peptidoglycan to tobramycin was confirmed. In addition, isolated and purified AAC(2')-Ia was shown to catalyze in vitro the transfer of acetate from acetyl-coenzyme A, soluble fragments of peptidoglycan, and N-acetylglucosamine to tobramycin. These data further support the proposal that AAC(2')-Ia from P. stuartii may have a physiological role in its secondary metabolism and that its activity on aminoglycosides is simply fortuitous.  相似文献   

16.
The mechanism of resistance to gentamicin and tobramycin in a clinical isolate ofAcinetobacter baumannii, in which aminoglycoside-modifying enzymes were not detected, was investigated. For increase of the resistance gene product, DNA prepared from theA. baumannii isolate was cloned into pUC18 and introduced intoEscherichia coli by transformation. Gentamicin-resistant transformants were screened for aminoglycoside-modifying enzymes. This approach identified two genes encoding AAC(3) and AAD(2) activity, respectively. To determine whether both genes are expressed in the hostAcinetobacter strain, we extracted total cellular RNA from this strain, and Northern blots were hybridized with the cloned AAC(3) and AAD(2) structural genes. mRNA transcribed from the AAC(3) gene alone was detected. This shows that cloning a functional resistance gene is not sufficient in itself to investigate mechanisms of resistance in bacterial strains without detectable aminoglycoside-modifying activity. Furthermore, this study suggests a potential limitation of antibiotic resistance gene probes for studying mechanisms of resistance.  相似文献   

17.
Saccharomyces cerevisiae strains expressing a single type of ADP/ATP carrier (AAC) protein were prepared from a mutant in which all AAC genes were disrupted, by transformation with plasmids containing a chosen AAC gene. As demonstrated by measurements of [14C]ADP specific binding and transport, all three translocator proteins, AAC1, AAC2 and AAC3 when present in the mitochondrial membrane, exhibited similar translocation properties. The disruption of some AAC genes, however, resulted in phenotypes indicating that the function of these proteins in whole cells can be quite different. Specifically, we found that the disruption of AAC1 gene, but not AAC2 and AAC3, resulted in a change in colony phenotype.  相似文献   

18.
The investigation was focused on 60 strains of Gr- microorganisms isolated from urocultures and resistant to gentamicin and/or amikacin. Resistance evaluation by the method of Bauer--Kirby with respect to 7 aminoglycoside aminocyclitols (streptomycin, spectinomycin, kanamycin, gentamicin, tobramycin, sisomicin, netilmicin and amikacin) as well as determination of minimal inhibitory concentrations revealed that the most frequently occurring resistance phenotype was streptomycin kanamycin gentamicin sisomicin tobramycin (91.66% tested microorganisms). Approximately 50% of all tested organisms were found to be susceptible to netilmicin. Assays for aminoglycoside-modifying enzymes using 32P ATP and 14C ATP confirmed APH(3')(5")--I and AAD(2") as resistance determinants regarding 4,6-substituted deoxystreptamines. Acetyltransferase determination by the method of Shannon and Phillips and that by van de Klundert et al. most frequently assumes for the formation of AAC(3)-II and AAC(3)-I. Assays utilizing radioactive labels in amikacin-resistant strains determine the enzymes APH(3') and AAD(2")-II.  相似文献   

19.
Summary Genes for gentamicin-3-acetyltransferases [ACC(3)] of types III and IV have been cloned from various R-plasmids. In two R-plasmids, pWP14a (AAC(3)-III) and pWP7b [AAC(3)-IV], resistance genes have been found directly adjacent to a single copy of an IS element, IS140. Nucleotide sequence determination of the AAC(3)-IV gene from plasmid pWP7b and of part of IS140 from three different sources suggested that the-35 region of the AAC(3)-IV promoter was part of the IS element. A similarly built-up promoter was found in pWP14a.It was found also, that a hygromycin B phosphotransferase was expressed from a locus neighbouring the AAC(3)-IV gene in pWP7b which was under the control of the same promoter.In two other R-plasmids, pWP113a and pWP116a, the AAC(3)-III gene was found in different genetic environments, namely close to Tn3-like structures.  相似文献   

20.
The aacA-aphD aminoglycoside resistance determinant of the Staphylococcus aureus transposon Tn4001, which specifies resistance to gentamicin, tobramycin and kanamycin, has been cloned and shown to express these resistances in Escherichia coli. The determinant encoded a single protein with an apparent size of 59 kDa which specified both aminoglycoside acetyltransferase [AAC(6')] and aminoglycoside phosphotransferase [APH(2")] activities. Nucleotide sequence analysis of the determinant showed it to be capable of encoding a 479-amino-acid protein of 56.9 kDa. analysis of Tn1725 insertion mutants of the determinant indicated that resistance to tobramycin and kanamycin is due to the AAC activity specified by, approximately, the first 170 amino acids of the predicted protein sequence and is consistent with the gentamicin resistance, specified by the APH activity, being encoded within the C-terminal region of the protein. Comparison of the C-terminal end of the predicted amino acid sequence with the reported sequences of 13 APHs and a viomycin phosphotransferase revealed a region which is highly conserved among these phosphotransferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号