首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly purified peroxisomal fractions from rat liver contain ATPase activity (18.8 ± 0.1 nmol/min per mg, n = 6). This activity is about 2% of that found in purified mitochondrial fractions. Measurement of marker enzyme activities and immunoblotting of the peroxisomal fraction with an antiserum raised against the β-subunit of mitochondrial ATPase indicates that the ATPase activity in the peroxisomal fractions can not be ascribed to contamination with mitochondria or other subcellular organelles. From the sensitivity of the ATPase present in the peroxisomal fraction towards a variety of ATPase inhibitors, we conclude that it displays both V-type and F-type features and is distinguishable from both the mitochondrial F1F0-ATPase and the lysosomal V-type ATPase.  相似文献   

2.
Two gene clusters encoding F- or V-type ATPases were found in genomic DNA of the hyperthermophilic bacterium Thermotoga neapolitana. The subunit genes of each ATPase formed an operon. While the gene arrangement in the operon of the F-type ATPase resembled those in eukaryotic organelles and bacteria, that of the V-type ATPase was different from those reported for archaea, bacteria, or eukaryotes. Both ATPases were found to be expressed in the cells of T. neapolitana by Western blot analysis. Although V-type ATPase could not be rendered soluble, F-type ATPase was solubilized with 1% Triton X-100 and characterized. This is the first report of the coexistence of both F- and V-type ATPases in hyperthermophilic bacteria. It has recently been shown by a genome analysis that Thermotoga maritima has no V-type ATPase gene cluster but does have an F-type ATPase gene cluster; however, part of a gene for the D-subunit of the V-type ATPase gene has been reported in the T. maritima genome. Evolution of the two types of ATPases in Thermotoga is discussed.  相似文献   

3.
The overall structure of V-ATPase complexes resembles that of F-type ATPases, but the stalk region is different and more complex. Database searches followed by sequence analysis of the five water-soluble stalk region subunits C–G revealed that (i) to date V-ATPases are found in 16 bacterial species, (ii) bacterial V-ATPases are closer to archaeal A-ATPases than to eukaryotic V-ATPases, and (iii) different groups of bacterial V-ATPases exist. Inconsistencies in the nomenclature of types and subunits are addressed. Attempts to assign subunit positions in V-ATPases based on biochemical experiments, chemical cross-linking, and electron microscopy are discussed. A structural model for prokaryotic and eukaryotic V-ATPases is proposed. The prokaryotic V-ATPase is considered to have a central stalk between headpiece and membrane flanked by two peripheral stalks. The eukaryotic V-ATPases have one additional peripheral stalk.  相似文献   

4.
Five widely documented mechanisms for chloride transport across biological membranes are known: anion-coupled antiport, Na+ and H(+)-coupled symport, Cl- channels and an electrochemical coupling process. These transport processes for chloride are either secondarily active or are driven by the electrochemical gradient for chloride. Until recently, the evidence in favour of a primary active transport mechanism for chloride has been inconclusive despite numerous reports of cellular Cl(-)-stimulated ATPases coexisting, in the same tissue, with uphill ATP-dependent chloride transport. Cl(-)-stimulated ATPase activity is a ubiquitous property of practically all cells with the major location being of mitochondrial origin. It also appears that plasma membranes are sites of Cl(-)-stimulated ATPase pump activity. Recent studies of Cl(-) -stimulated ATPase activity and ATP-dependent chloride transport in the same plasma membrane system, including liposomes, strongly suggest a mediation by the ATPase in the net movement of chloride up its electrochemical gradient across the plasma membrane structure. Contemporary evidence points to the existence of Cl(-)-ATPase pumps; however, these primary active transporters exist as either P-, F- or V-type ATPase pumps depending upon the tissue under study.  相似文献   

5.
The presence of an A/V-type ATPase in different Thermus species and in the deeper branching species Meiothermus ruber and Deinococcus radiodurans suggests that the presence of the archaeal-type ATPase is a primitive character of the Deinococci that was acquired through horizontal gene transfer (HGT). However, the presence of a bacterial type F-ATPases was reported in two newly identified Thermus species (Thermus scotoductus DSM 8553 and Thermus filiformis DSM 4687). Two different scenarios can explain this finding, either the recent replacement of the ancestral A/V-type ATPase in Thermus scotoductus and Thermus filiformis with a newly acquired F-type ATPase or a long-term persistence of both F and A type ATPase in the Deinococci, which would imply several independent losses of the F-type ATPase in the Deinococci. Using PCR with redundant primers, sequencing and Southern blot analyses, we tried to confirm the presence of an F-type ATPase in the genome of Thermus scotoductus and Thermus filiformis, and determine its phylogenetic affinities. Initial experiments appeared to confirm the presence of an F-type ATPase in Thermus scotoductus that was similar to the F-ATPases found in Bacillus. However, further experiments revealed that the detection of an F-ATPase was due to a culture contamination. For all the Thermus and Deinococcus species surveyed, including Thermus scotoductus, cultures that were free of contamination only contained an A/V-type ATP synthases.  相似文献   

6.
Proteins exposed on the cytoplasmic face of isolated chromaffin granules were labelled by lactoperoxidase-catalysed radioiodination and by non-enzymic biotinylation. Granule membranes were then prepared, and the H+-translocating ATPase isolated by fractionation with Triton X-114. The labelling of individual ATPase subunits was assessed by polyacrylamide-gel electrophoresis, followed by autoradiography or by blotting and decoration with 125I-labelled streptavidin. Subunits of 72, 57 and kDa were strongly labelled, and could be removed from the membrane at pH 11: they are therefore extrinsic proteins. The 120 kDa subunit was also labelled, but it was not solubilized at pH 11. Photolabelling with a hydrophobic probe indicated that this subunit penetrates the bilayer, and enzymic degradation studies showed the presence of N-linked oligosaccharides; this subunit therefore spans the chromaffin-granule membrane. Labelling of the 17 kDa subunit occurred predominantly on the extracytoplasmic (matrix) face of the granule membrane. These results are consistent with this V-type ATPase having a structure that is generally similar to that of mitochondrial (F-type) ATPases, although the attachment of the 120 kDa subunit may be asymmetrical.  相似文献   

7.
The vacuolar ATPases (V-type ATPases) are a family of ATP-dependent ion pumps and found in two principal locations, in endomembranes and in plasma membranes. This family of ATPases is responsible for acidification of intracellulare compartments and, in certain cases, ion transport across the plasma membrane of eucaryotic cells. V-ATPases are composed of two distinct domains: a catalytic V1 sector, in which ATP hydrolysis takes place, and the membrane-embedded sector, V0, which functions in ion conduction. In the past decade impressive progress has been made in elucidating the properties structure, function and moleculare biology. These knowledge sheds light also on the evolution of V-ATPases and their related families of A-(A1A0-ATPase) and F-type (F1F0-ATPases)ATPases.  相似文献   

8.
V-type ATPases are multi-protein complexes, which acidify cellular compartments in eukaryotes. They pump protons against an ion gradient, driven by a mechano-chemical framework that exploits ATP hydrolysis as an energy source. This process drives the rotation of the so-called c-ring, a membrane embedded complex in the Vo-domain of the V-type ATPase, resulting in translocation of protons across the membrane. One way in which the enzyme is regulated is by disassembly and reassembly of the V1-domain with the Vo-domain, which inactivates and reactivates the enzyme, respectively. Recently, structural data for the isolated Vo-domain from S. cerevisiae in an inactivated state were reported, suggesting the location of previously unobserved proton access pathways within the cytoplasmic and luminal compartments of the stator subunit a in Vo. However, the structural rationale for this inactivation remained unclear. In this study, the water accessibility pathway at the cytoplasmic side is confirmed, and novel insights into the role of the luminal channel with respect to the inactivation mechanism are obtained, using atomic-resolution molecular dynamics simulations. The results show that protonation of the key-glutamate, located in the c-ring of the Vo-domain, and facing the luminal compartment is preserved, when residing in the V1-depleted state. Maintaining the protonation of this essential glutamate is necessary to lock the luminal channel in the inactive, solvent-free state. Based on these theoretical observations and previous experimental results, a model of the proton translocation mechanism in the Vo-domain from V-type ATPases is proposed.  相似文献   

9.
Both phosphointermediate- and vacuolar-type (P- and V-type, respectively) ATPase activities found in cholinergic synaptic vesicles isolated from electric organ are immunoprecipitated by a monoclonal antibody to the SV2 epitope characteristic of synaptic vesicles. The two activities can be distinguished by assay in the absence and presence of vanadate, an inhibitor of the P-type ATPase. Each ATPase has two overlapping activity maxima between pH 5.5 and 9.5 and is inhibited by fluoride and fluorescein isothiocyanate. The P-type ATPase hydrolyzes ATP and dATP best among common nucleotides, and activity is supported well by Mg2+, Mn2+, or Co2+ but not by Ca2+, Cd2+, or Zn2+. It is stimulated by hyposmotic lysis, detergent solubilization, and some mitochondrial uncouplers. Kinetic analysis revealed two Michaelis constants for MgATP of 28 microM and 3.1 mM, and the native enzyme is proposed to be a dimer of 110-kDa subunits. The V-type ATPase hydrolyzes all common nucleoside triphosphates, and Mg2+, Ca2+, Cd2+, Mn2+, and Zn2+ all support activity effectively. Active transport of acetylcholine (ACh) also is supported by various nucleoside triphosphates in the presence of Ca2+ or Mg2+, and the Km for MgATP is 170 microM. The V-type ATPase is stimulated by mitochondrial uncouplers, but only at concentrations significantly above those required to inhibit ACh active uptake. Kinetic analysis of the V-type ATPase revealed two Michaelis constants for MgATP of approximately 26 microM and 2.0 mM. The V-type ATPase and ACh active transport were inhibited by 84 and 160 pmol of bafilomycin A1/mg of vesicle protein, respectively, from which it is estimated that only one or two V-type ATPase proton pumps are present per synaptic vesicle. The presence of presumably contaminating Na+,K(+)-ATPase in the synaptic vesicle preparation is demonstrated.  相似文献   

10.
Coccolithophorids are marine unicellular algae characterized by their ability to carry out controlled, subcellular calcification. The biochemical and kinetic features of membrane-bound Ca2+-stimulated ATPases have been examined. Membranes and organelles from axenic cultures of Pleurochrysis sp. (CCMP299) were isolated by means of sucrose density centrifugation. High levels of Ca2+-stimulated ATPase were detected in chloroplasts, Golgi apparatus, plasma membrane, and coccolith vesicles. The sensitivity of the enzyme activity in the organelles and membranes was assessed with pharmacologic agents that are known to be specific for the several isoforms of Ca2+-stimulated ATPase. The Ca2+-stimulated ATPase activity in the Golgi and coccolith vesicle preparations was sensitive to nitrate, thiocyanate, and sodium azide and insensitive to vanadate, cyclopiazonic acid, and thapsigargin. ATP-dependent H+ movement, but not 45Ca2+ transport, across the coccolith vesicle was demonstrated. The Ca2+-stimulated ATPase in the plasma membrane preparation was sensitive to vanadate. ATP-dependent, vanadate-sensitive efflux of 45Ca2+ was demonstrated for microsomal material derived from gradient-isolated plasma membrane. Polypeptides from isolated Golgi and coccolith vesicle preparations cross-reacted to an antibody raised against a subunit of the oat root proton pump, whereas polypeptides from the chloroplast preparations did not cross-react. These findings show that a V-type Ca2+-stimulated ATPase is located on the coccolith vesicle membrane and a P-type Ca2+-stimulated ATPase is located on the plasma membrane.  相似文献   

11.
A plasma membrane-bound adenosine triphosphatase with specific activities up to 0.2 micromol min(-1) (mg protein)(-1) at 80 degrees C was detected in the thermoacidophilic crenarchaeon Acidianus ambivalens (DSM 3772). The enzymatic activity exhibited a broad pH-optimum in the neutral range with two suboptima at pH 5.5 and 7.0, respectively. Sulfite activation resulted in only one pH optimum at 6.25. In the presence of the divalent cations Mg2+ and Mn2+ the ATPase activity was maximal. Remarkably, the hydrolytic rates of GTP and ITP were substantially higher than for ATP. ADP and pyrophosphate were only hydrolyzed with small rates, whereas AMP was not hydrolyzed at all. Both activities could be weakly inhibited by the classical F-type ATPase inhibitor N,N'-dicyclohexylcarbodiimide, whereas azide had no influence at all. The classical inhibitor of V-type ATPases, nitrate, also exerted a small inhibitory effect. The strongly specific V-type ATPase inhibitor concanamycin A, however, showed no effect at all. The P-type ATPase inhibitor vanadate had no inhibitory effect on the ATPase activity at pH 7.0, whereas a remarkable inhibition at high concentrations could be observed for the activity at pH 5.5. Arrhenius plots for both membrane bound ATPase activities were linear up to 95 degrees C, reflecting the enormous thermostability of the enzyme.  相似文献   

12.
Three experimental systems are described including sarcoplasmic reticulum (SR) vesicles, reconstituted proteoliposomes, and recombinant protein obtained by gene transfer and expression in foreign cells. It is shown that the Ca2+ ATPase of sarcoplasmic reticulum (SR) includes an extramembranous globular head which is connected through a stalk to a membrane bound region. Cooperative binding of two calcium ions occurs sequentially, within a channel formed by four clustered helices within the membrane bound region. Destabilization of the helical cluster is produced following enzyme phosphorylation by ATP at the catalytic site in the extramembranous region. The affinity and orientation of the Ca2+ binding site are thereby changed, permitting vectorial dissociation of bound Ca2+ against a concentration gradient. A long range linkage between phosphorylation and Ca2+ binding sites is provided by an intervening peptide segment that retains high homology in cation transport ATPases, and whose function is highly sensitive to mutational perturbations.  相似文献   

13.
Pentameric head structures of the V-type H+–ATPase ofMesembryanthemum crystallinum L. were demonstrated in additionto hexameric head structures by rotational image analysis andmolecular projections of negatively stained H+–ATPaseheads. This observation, at least partially, is in contrastto the standard model of the V-type H+–ATPase predictingsolely a hexameric head structure with three A and three B subunitsin analogy to the F-type ATPases. With one A or B subunit missingtwo A or two B subunits would be adjacent to each other in thepentameric ATPase head. By chemical cross-linking of H +–ATPasesubunits a crosslinking product exclusively consisting of Bsubunits, in addition to a cross-linking product consistingof subunits A and B was detected. Thus, the pentameric headsmight lack one A subunit, although the lack of one B subunitcan not be totally ruled out. We assume that the hexameric headstructure is the catalytically active configuration while thepentameric head structure may be a relatively stable intermediateof turnover. Key words: V-type H+–ATPase, protein structure, electron microscopy, tonoplast, Mesembryanthemum crystallinum L  相似文献   

14.
Photophosphorylation in halobacteria is carried out by two rather simple elements: an A-type ATP synthase and light-driven ion-pumping bacterial rhodopsins. The unique features of halobacterial ATP synthase, mostly common to archaebacteria (A-type), and of new members of the bacteriorhodopsin family are introduced along with studies performed in the authors' laboratory. This is the story of how we found that the A-type ATP synthase is close to V-type ATPase but far from F-type ATPase, although all three ATPases are believed to have the same ancestor. Archaerhodopsins, the new members of the proton-pumping retinal proteins, were found in Australian halobacteria and have been used in a comparative study of bacterial rhodopsins.  相似文献   

15.
Abstract The ole B gene of Streptomyces antibioticus , oleandomycin producer, encodes an ABC transporter containing two putative ATP-binding domains and is involved in oleandomycin resistance and secretion in this organism. We have overexpressed in Escherichia coli the N-terminal nucleotide-binding domain of OleB (OleB') as a fusion protein to a maltose-binding protein and purified the fusion protein by affinity chromatography. The fusion protein showed ATPase activity dependent on the presence of Mg2+ ions. ATPase activity was resistant to specific inhibitors of P-, F-, and V-type ATPase whereas sodium azide and 7-chloro-4-nitrobenzo-2-oxa-l,3-diazole (NBD-C1) were strong inhibitors. The change of Lys71, located within the Walker A motif of the OleB' protein, to Gin or Glu caused a loss of ATPase activity, whereas changing to Gly did not impair the activity. The results suggest that the intrinsic ATPase activity of purified fusion protein can be clearly distinguished from other ATP-hydrolysing enzymes, including ion-translocating ATPases or ABC-traffic ATPases, both on the basis of inhibition by different agents and since it hydrolyzes ATP without interacting with a hydrophobic membrane component.  相似文献   

16.
A membrane-associated ATPase with an M(r) of approximately 510,000 and containing subunits with M(r)s of 80,000 (alpha), 55,000 (beta), and 25,000 (gamma) was isolated from the methanogen Methanococcus voltae. Enzymatic activity was not affected by vanadate or azide, inhibitors of P- and F1-ATPase, respectively, but was inhibited by nitrate and bafilomycin A1, inhibitors of V1-type ATPases. Since dicyclohexylcarbodiimide inhibited the enzyme when it was present in membranes but not after the ATPase was solubilized, we suggest the presence of membrane-associated component analogous to the F0 and V0 components of both F-type and V-type ATPases. N-terminal amino acid sequence analysis of the alpha subunit showed a higher similarity to ATPases of the V-type family than to those of the F-type family.  相似文献   

17.
The filamentous fungus Neurospora crassa contains many smallvacuoles. These organelles contain high concentrations of polyphosphates andbasic amino acids, such as arginine and ornithine. Because of their size anddensity, the vacuoles can be separated from other organelles in the cell. TheATP-driven proton pump in the vacuolar membrane is a typical V-type ATPase.We examined the size and structure of this enzyme using radiationinactivation and electron microscopy. The vacuolar ATPase is a large andcomplex enzyme, which appears to contain at least thirteen different types ofsubunits. We have characterized the genes that encode eleven of thesesubunits. In this review, we discuss the possible function and structure ofthese subunits.  相似文献   

18.
Highly purified peroxisomal fractions from rat liver contain ATPase activity (18.8 +/- 0.1 nmol/min per mg, n = 6). This activity is about 2% of that found in purified mitochondrial fractions. Measurement of marker enzyme activities and immunoblotting of the peroxisomal fraction with an antiserum raised against the beta-subunit of mitochondrial ATPase indicates that the ATPase activity in the peroxisomal fractions can not be ascribed to contamination with mitochondria or other subcellular organelles. From the sensitivity of the ATPase present in the peroxisomal fraction towards a variety of ATPase inhibitors, we conclude that it displays both V-type and F-type features and is distinguishable from both the mitochondrial F1F0-ATPase and the lysosomal V-type ATPase.  相似文献   

19.
The filamentous fungusNeurospora crassa has many small vacuoles which, like mammalian lysosomes, contain hydrolytic enzymes. They also store large amounts of phosphate and basic amino acids. To generate an acidic interior and to drive the transport of small molecules, the vacuolar membranes are densely studded with a proton-pumping ATPase. The vacuolar ATPase is a large enzyme, composed of 8–10 subunits. These subunits are arranged into two sectors, a complex of peripheral subunits called V1 and an integral membrane complex called V0. Genes encoding three of the subunits have been isolated.vma-1 andvma-2 encode polypeptides homologous to the and subunits of F-type ATPases. These subunits appear to contain the sites of ATP binding and hydrolysis.vma-3 encodes a highly hydrophobic polypeptide homologous to the proteolipid subunit of vacuolar ATPases from other organisms. This subunit may form part of the proton-containing pathway through the membrane. We have examined the structures of the genes and attempted to inactivate them.  相似文献   

20.
Archaebacterial plasma membranes contain an ATPase acting in vivo as a delta mu H(+)-driven ATP synthase. While functional features and their general structural design are resembling F-type ATPases, primary sequences of the two large polypeptides from the catalytic part are closely related to V-type ATPases from eucaryotic vacuolar membranes. The chimeric nature of archaebacterial ATPase from Sulfolobus was investigated in terms of nucleotide interactions and related to specific sequence parameters in a comparison to well known F- and V-type ATPases. The study disclosed a general difference of F- and V-type ATPases at one class of the nucleotide binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号