首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
A variety of monocyte/neutrophil adhesive functions is coordinated by the CD11b/CD18 complex, a leukocyte-restricted member of integrin receptors. Previous studies have shown that the adenine nucleotide ADP produces a transient and high affinity recognition state of CD11b/CD18 for its complementary ligands fibrinogen and factor X. We have now characterized the process of intracellular signalling initiated in monocytes by ADP. Further, we have causally related these events to the qualitative upregulation of CD11b/CD18, as exemplified by its inducible binding of factor X. Micromolar concentrations of ADP or ATP produce dose-dependent increase in monocyte cytosolic free [Ca2+]i through mobilization from intracellular stores coupled with a sustained, EGTA-sensitive, influx of Ca2+ from the external compartment. This Ca2+ response was kinetically and quantitatively heterogeneous when analyzed at the single cell level. Ca2+ channel antagonists nifedipine or verapamil blocked the sustained phase of ADP-induced Ca2+ entry and inhibited 125I-factor X binding to CD11b/CD18 in a dose-dependent manner. Nifedipine-sensitive Ca2+ channels are gated by variations in transmembrane potential in a variety of cells. In monocytes, depolarizing conditions by high external [K+] or by the Na+ ionophore gramicidin D mimicked the stimulatory effect of ADP, inducing increased cytosolic free [Ca2+]i and 125I-factor X binding to CD11b/CD18. In contrast, these responses were both abrogated by hyperpolarization with the K+ ionophore valinomycin. These data suggest that a sustained increase in monocyte cytosolic free [Ca2+]i coupled with variations in transmembrane potential regulate the high affinity receptor function of CD11b/CD18. Although prototypically exemplified for monocyte stimulation with adenine nucleotides, this pathway of intracellular signalling might provide a general mechanism for transient and qualitative functional upregulation of integrin receptors.  相似文献   

3.
4.
Human promyelocytic leukemia (HL-60) cells display a novel voltage-dependent outward current under voltage clamp. This current is present at low levels in the proliferative state and in granulocytes derived from HL-60 cells which were induced to differentiate with retinoic acid. It is elevated in macrophages derived from HL-60 cells after exposure to phorbol-12-myristate-13-acetate (PMA). The current is carried primarily by K+, is blocked by Cs+ and by increased intracellular concentrations of Cl-. From a holding potential of -80 mV, significant activation required depolarization to +20 mV membrane potential. Activation was not influenced by intracellular Ca2+ (1-2 X 10(-6) M). These properties appear to differ significantly from the Ca2+-activated K+ channel and the delayed rectifier. The increase of this voltage-activated current in differentiation toward the macrophage, but not the granulocyte, suggests that this current is correlated specifically with macrophage differentiation.  相似文献   

5.
Infected peripheral blood monocytes are proposed to play a key role in the hematogenous dissemination of human cytomegalovirus (HCMV) to tissues, a critical step in the establishment of HCMV persistence and the development of HCMV-associated diseases. We recently provided evidence for a unique strategy involved in viral dissemination: HCMV infection of primary human monocytes promotes their transendothelial migration and differentiation into proinflammatory macrophages permissive for the replication of the original input virus. To decipher the mechanism of hematogenous spread, we focused on the viral dysregulation of early cellular processes involved in transendothelial migration. Here, we present evidence that both phosphatidylinositol 3-kinase [PI(3)K] and NF-kappaB activities were crucial for the HCMV induction of monocyte motility and firm adhesion to endothelial cells. We found that the beta(1) integrins, the beta(2) integrins, intracellular adhesion molecule 1 (ICAM-1), and ICAM-3 were upregulated following HCMV infection and that they played a key role in the firm adhesion of infected monocytes to the endothelium. The viral regulation of adhesion molecule expression is complex, with PI(3)K and NF-kappaB affecting the expression of each adhesion molecule at different stages of the expression cascade. Our data demonstrate key roles for PI(3)K and NF-kappaB signaling in the HCMV-induced cellular changes in monocytes and identify the biological rationale for the activation of these pathways in infected monocytes, which together suggest a mechanism for how HCMV promotes viral spread to and persistence within host organs.  相似文献   

6.
These studies were designed to test the hypothesis that changes in intracellular Ca2+ levels and activation of the calcium ion- and phospholipid-dependent protein kinase C were required for the induction of macrophage tumoricidal activity by interferon-gamma (IFN-gamma). Phenothiazines and R24571, known antagonists of calcium-binding proteins and therefore nonspecific inhibitors of protein kinase C, blocked in a dose-dependent manner the induction of macrophage cytocidal activity by either natural or recombinant IFN-gamma. Macrophages depleted of intracellular Ca2+ by chelation with Quin 2, were also unresponsive to IFN-gamma. These treatments effected neither the binding of IFN-gamma to its cell surface receptor nor the normal intracellular processing of IFN-gamma. Activators of protein kinase C (such as phorbol esters) and Ca2+ ionophores when added alone did not effect the activation state of the macrophage population. However, macrophages exposed to both drugs in combination were elevated into the primed activation state such that in the presence of a second signal (lipopolysaccharide or heat killed Listeria monocytogenes), the cells were triggered to express full levels of tumoricidal activity. The capacity of phorbol esters to induce cellular activation correlated with their ability to bind and to activate protein kinase C. No synergistic effect was observed between IFN-gamma and protein kinase C activators and/or Ca2+ ionophores, indicating that the drugs could only prime and could not trigger macrophages for tumor cell killing. These results thus support the concept that protein kinase C activation and mobilization of intracellular Ca2+ are essential steps in the pathway of IFN-gamma-dependent induction of non-specific tumoricidal activity in macrophages.  相似文献   

7.
Antigen binding to its specific receptor on T cells initiates a series of intracellular events that result in cell differentiation, activation, and clonal expansion. However, the mechanism by which these antigen-occupied receptors induce the transmembrane signal transduction needs clarification. Because this mechanism appears to involve an increase in intracellular free Ca2+ concentration and activation of protein kinase C (PKC), we tested the effect of Ca2+ ionophores and PKC activators on alloantigen-specific primary mixed leukocyte culture cells. Both calcium ionophores, A23187 and ionomycin, in conjunction with 12-O-tetradecanoylphorbol 13-acetate (TPA) mimicked the effect of antigen or interleukin 2 (IL 2) by inducing strong proliferative and alloantigen-specific cytotoxic responses. In addition, Ca2+ ionophore and TPA induced IL 2 receptor expression and IL 2 secretion. The capacity of other phorbol esters or a non-phorbol ester tumor promoter (teleocidin) to replace TPA in induction of cell activation correlated with their ability to bind to and to activate PKC. In addition, the synergistic effect of Ca2+ ionophore and TPA was blocked by either a Ca2+ chelator (EGTA) or cAMP, which is thought to inhibit phosphatidylinositol metabolism. To determine whether the induction of this cytotoxic activity was mediated by a direct effect of Ca2+ ionophore and TPA on cytotoxic T (Tc) cells or was secondary to IL 2 secretion by activated helper T (Th) cells, we tested the effect of Ca2+ ionophore and TPA on isolated populations of cloned, alloantigen-specific Th and Tc cells. Both agents induced cell proliferation and IL 2 production by Th cells, but not by Tc cells. Activation of mixed clones of Th and Tc cells, but not of Tc cells alone, resulted in cytotoxic activity, an effect that could be blocked by anti-IL 2 receptor antibodies. The results thus demonstrate that an increased concentration of intracellular Ca2+ in conjunction with PKC activation can bypass the signal provided by antigen-receptor interaction on Th cells, but does not substitute for IL 2 in activating cytotoxicity by isolated Tc cells.  相似文献   

8.
Studies from a number of laboratories have shown that the myeloid lineage is prominent in human cytomegalovirus (HCMV) latency, reactivation, dissemination, and pathogenesis. Existing as a latent infection in CD34(+) progenitors and circulating CD14(+) monocytes, reactivation is observed upon differentiation to mature macrophage or dendritic cell (DC) phenotypes. Langerhans' cells (LCs) are a subset of periphery resident DCs that represent a DC population likely to encounter HCMV early during primary infection. Furthermore, we have previously shown that CD34(+) derived LCs are a site of HCMV reactivation ex vivo. Accordingly, we have utilized healthy-donor CD34(+) cells to study latency and reactivation of HCMV in LCs. However, the increasing difficulty acquiring healthy-donor CD34(+) cells--particularly from seropositive donors due to the screening regimens used--led us to investigate the use of CD14(+) monocytes to generate LCs. We show here that CD14(+) monocytes cultured with transforming growth factor β generate Langerin-positive DCs (MoLCs). Consistent with observations using CD34(+) derived LCs, only mature MoLCs were permissive for HCMV infection. The lytic infection of mature MoLCs is productive and results in a marked inhibition in the capacity of these cells to promote T cell proliferation. Pertinently, differentiation of experimentally latent monocytes to the MoLC phenotype promotes reactivation in a maturation and interleukin-6 (IL-6)-dependent manner. Intriguingly, however, IL-6-mediated effects were restricted to mature LCs, in contrast to observations with classical CD14(+) derived DCs. Consequently, elucidation of the molecular basis behind the differential response of the two DC subsets should further our understanding of the fundamental mechanisms important for reactivation.  相似文献   

9.
10.
We have shown previously that calcium ionophore (CI) treatment of various myeloid origin cells results in rapid acquisition of properties associated with mature, activated dendritic cells. These properties include increased CD83 and costimulatory molecule expression, tendencies to form dendritic processes, loss of CD14 expression by monocytes, and typically an enhanced capacity to sensitize T lymphocytes to Ag. We here analyze the intracellular signaling pathways by which CI induces acquisition of such properties. Thapsigargin, which raises intracellular Ca2+ levels by antagonizing its sequestration, induced immunophenotypic and morphologic changes that paralleled CI treatment. CI-induced activation was broadly attenuated by the Ca2+ chelating compound EGTA and by calmodulin antagonists trifluoperazine dimaleate and W-7. However, antagonists of signaling pathways downstream to calmodulin displayed more selective inhibitory effects. Calcineurin antagonists cyclosporin A and the FK-506 analogue, ascomycin, diminished costimulatory molecule and CD83 expression, as well as formation of dendritic processes in CI-treated myeloid cells, and strongly attenuated the T cell allosensitizing capacity of CI-treated HL-60 cells. These calcineurin antagonists displayed minimal effect on CI-induced CD14 down-regulation in monocytes. In contrast, the calmodulin-dependent protein kinase antagonists, K252a and KT5926, while displaying only modest effects on CI-induced costimulatory molecule and CD83 expression, strongly blocked CD14 down-regulation. These results are consistent with a Ca2+-dependent mechanism for CI-induced differentiation of myeloid cells, and indicate that multiple discrete signaling pathways downstream to calcium mobilization and calmodulin activation may be essential in regulating this process.  相似文献   

11.
Human cytomegalovirus (HCMV) infections in immunocompromised patients are associated with impaired immunological functions. Blood monocytes, which can differentiate into dendritic cells upon cytokine stimulation, play a central role in adequate immune reactivity and are believed to carry latent HCMV. We demonstrate here that HCMV infection of monocytes results in a block in the cytokine-induced differentiation of monocytes into functionally active CD1a-positive dendritic cells, which exhibited severely depressed immunological functions in vitro. The HCMV-infected cells exhibited a significantly reduced ability to endocytose fluorescein isothiocyanate-labeled dextran particles as well as a more than 90% reduced ability to migrate in response to the chemoattractant factors RANTES, MIP-1alpha, and MIP-3beta. Interestingly, HCMV-infected cells expressed high levels of the costimulatory molecule CD86, in contrast to the low levels of expression that was observed on uninfected monocytes and uninfected immature dendritic cells. Furthermore, HCMV-infected CD1a-negative cells were unable to induce a T-cell response. Thus, these observations suggest that HCMV infection of monocytes in vitro blocks cytokine-induced dendritic cell differentiation, and since dendritic cells play a central role in initiating immune responses, these findings suggest a powerful tactic to avoid immune recognition and to blunt the immune response at early phases of infection.  相似文献   

12.
Human cytomegalovirus (HCMV) infection in immunocompromised patients is associated with impaired immunological function. Blood monocytes, which differentiate into macrophage effector cells, are of central importance for immune reactivity. Here, we demonstrate that HCMV transiently blocks cytokine-induced differentiation of monocytes into functionally active phagocytic macrophages. In HCMV-treated cultures, the cells had classical macrophage markers but lacked the classical morphological appearance of macrophages and had impairments in migration and phagocytosis. Even at very low multiplicities of infection, macrophage differentiation was almost completely inhibited. The inhibition appeared to be mediated by a soluble factor released upon viral treatment of monocytes. Human immunodeficiency virus or measles virus had no such effects. These findings suggest that HCMV impairs immune function by blocking certain aspects of cytokine-induced differentiation of monocytes and demonstrate an efficient pathway for this virus to evade immune recognition that may have clinical implications for the generalized immunosuppression often observed in HCMV-infected patients.  相似文献   

13.
Human cytomegalovirus (HCMV) infects cells by a series of processes including attachment, penetration via fusion of the envelope with the plasma membrane, and transport of the viral DNA to the nucleus. The details of the early events of HCMV infection are poorly understood. We have recently reported that CD13, human aminopeptidase N, a metalloprotease, is present on blood cells susceptible in vitro to HCMV infection (C. Söderberg, S. Larsson, S. Bergstedt-Lindqvist, and E. Möller, J. Virol. 67:3166-3175, 1993). Here we report that human CD13 is involved in HCMV infection. Antibodies directed against human CD13 not only inhibit infection but also block binding of HCMV virions to susceptible cells. Compounds known to inhibit aminopeptidase activity block HCMV infection. HCMV-resistant murine fibroblasts have heightened susceptibility to HCMV infection after transfection with complementary DNA encoding human CD13. A significant increase in binding of HCMV was observed in the CD13-expressing transfectants compared with neomycin-resistant control mouse cells. However, murine fibroblasts transfected with mutant CD13, lacking a portion of the aminopeptidase active site, remained susceptible to HCMV infection. Thus, human CD13 appears to mediate HCMV infection by a process that increases binding, but its enzymatic domain is not necessary for infection.  相似文献   

14.
In the present study, we characterized in monocytes the rise in [Ca(2+)](i) evoked by monoclonal antibodies (mAbs) to aminopeptidase N (APN)/CD13, showing a two-phase calcium increase with a small-belled [Ca(2+)](i) rise due to the release of calcium from intracellular stores and a more sustained plateau due to the influx of calcium from the extracellular environment. Tyrosine kinase inhibitors were able to inhibit the rise in [Ca(2+)](i) induced by ligation APN/CD13, as were inhibitors of the phosphatidylinositol 3-kinase. For the first time we can show that mAbs to APN/CD13 provoke phosphorylation of the mitogen-activated protein kinases ERK1/2, JNK, and p38. Furthermore, we show that mRNA of the chemotactic cytokine IL-8 is upregulated under the influence of APN/CD13 ligation. Although the in vivo ligand as well as possible cooperating membrane molecules remains to be identified, our results suggest that the membrane ectoenzyme APN/CD13 is a novel signal transduction molecule in monocytes.  相似文献   

15.
A mAb My 43 of the IgM isotype was obtained from a fusion of spleen cells immunized against human monocytes. This mAb inhibited monocyte binding of both soluble FITC-labeled IgA and IgA-coated E, whereas it did not inhibit IgG binding. The Ag recognized by My 43 was induced on HL-60 cells in parallel with IgA binding ability by 1-25 dihydroxy-vitamin D3 treatment. Phagocytosis of IgA-coated E by monocytes and 1-25 dihydroxyvitamin D3-treated HL-60 cells was inhibited by My 43. Furthermore, a heteroantibody of My 43 x F(ab)'2 anti-E promoted phagocytic uptake of E by monocytes. Production of superoxide anion by IFN-gamma treated U-937 cells was stimulated by My 43 but not by other IgM mAb recognizing myeloid cells. By these criteria My 43 recognized a molecule capable of triggering function. Moreover, its binding reactivity, ability to block binding of IgA and IgA-complexes, and its ability to induce activation of IgA receptor bearing myeloid cells, are consistent with the possibility that My 43 reacts with the IgA receptor on these cells.  相似文献   

16.
We investigated the effects of phorbol myristate acetate on muscarinic receptor-induced Ca2+ release from intracellular stores and extracellular entry in a human salivary duct cell line, HSG-PA. Phorbol myristate acetate (approximately 10(-7) M) blocked both Ca2+ release and Ca2+ entry induced by the muscarinic agonist carbachol. This blockade was the result of the activation of protein kinase C since 4 alpha-phorbol 12,13-didecanoate, which lacks the ability to activate protein kinase C, did not inhibit Ca2+ mobilization responses to carbachol. Importantly, at lower phorbol myristate acetate concentrations (approximately 10(-9) M), carbachol-induced Ca2+ release was blocked, but carbachol-induced Ca2+ entry was maintained. These results show that carbachol-induced Ca2+ entry does not occur via an intracellular store and that protein kinase C plays a role in a feedback control mechanism for muscarinic-induced Ca2+ mobilization at different levels.  相似文献   

17.
The role of Ca2+ in cell-mediated cytotoxicity has been the subject of many investigations and both Ca2+-dependent and -independent pathways have been reported. TNF was suggested to play a role in NK and macrophage cell-mediated cytotoxicity. We assumed that its role in target cell lysis might take place by a Ca2+-independent mechanism. This hypothesis was investigated in assays of rTNF-mediated lysis of tumor target cells. Extracellular Ca2+ depletion by the calcium chelator EGTA (2 mM and 5 mM) and blocking of intracellular Ca2+ mobilization by 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride did not inhibit TNF-mediated tumor cell lysis. Furthermore, blocking of Ca2+ influx in the presence of the Ca2+ channel blocker Verapamil did not inhibit TNF-mediated tumor cell lysis. Previous reports showed that lysis of sensitive tumor cells by TNF is preceded by binding of TNF to TNF receptors, internalization, and DNA degradation. These events were tested in the absence of Ca2+. Treatment with Ca2+ inhibitors did not affect binding of 125I-TNF to target cells. Also TNF induced the fragmentation of cellular DNA in target cells without extracellular or intracellular Ca2+. These findings demonstrate that the mechanism of TNF-mediated tumor cell lysis does not depend on intracellular or extracellular Ca2+ and that events associated with target cell lysis can also function in the absence of Ca2+. Thus, our findings support the contention of a Ca2+-independent lytic pathway in which secreted or membrane-bound TNF may interact with the target cells and ultimately result in DNA degradation and target cell lysis.  相似文献   

18.
《The Journal of cell biology》1993,121(5):1121-1132
CD20 is a plasma membrane phosphoprotein expressed exclusively by B lymphocytes. mAb binding to CD20 alters cell cycle progression and differentiation, indicating that CD20 plays an essential role in B lymphocyte function. Whole-cell patch clamp and fluorescence microscopy measurements of plasma membrane ionic conductance and cytosolic-free Ca2+ activity, respectively, were used to directly examine CD20 function. Transfection of human T and mouse pre-B lymphoblastoid cell lines with CD20 cDNA and subsequent stable expression of CD20 specifically increased transmembrane Ca2+ conductance. Transfection of CD20 cDNA and subsequent expression of CD20 in nonlymphoid cells (human K562 erythroleukemia cells and mouse NIH-3T3 fibroblasts) also induced the expression of an identical transmembrane Ca2+ conductance. The binding of a CD20-specific mAb to CD20+ lymphoblastoid cells also enhanced the transmembrane Ca2+ conductance. The mAb-enhanced Ca2+ currents had the same conductance characteristics as the CD20- associated Ca2+ currents in CD20 cDNA-transfected cells. C20 is structurally similar to several ion channels; each CD20 monomer possesses four membrane spanning domains, and both the amino and carboxy termini reside within the cytoplasm. Biochemical cross-linking of cell-surface molecules with subsequent immunoprecipitation analysis of CD20 suggests that CD20 may be present as a multimeric oligomer within the membrane, as occurs with several known membrane channels. Taken together, these findings indicate that CD20 directly regulates transmembrane Ca2+ conductance in B lymphocytes, and suggest that multimeric complexes of CD20 may form Ca2+ conductive ion channels in the plasma membrane of B lymphoid cells.  相似文献   

19.
The stage of differentiation and the lineage of CD4+ cells profoundly affect their susceptibility to infection by human immunodeficiency virus type 1 (HIV-1). While CD4+ T lymphocytes in patients are readily susceptible to HIV-1 infection, peripheral blood monocytes are relatively resistant during acute or early infection, even though monocytes also express CD4 and viral strains with macrophage (M)-tropic phenotypes predominate. CCR5, the main coreceptor for M-tropic viruses, clearly contributes to the ability of CD4+ T cells to be infected. To determine whether low levels of CCR5 expression account for the block in infection of monocytes, we examined primary monocyte lineage cells during differentiation. Culturing of blood monocytes for 5 days led to an increase in the mean number of CCR5-positive cells from <20% of monocytes to >80% of monocyte-derived macrophages (MDM). Levels of CCR5 expression per monocyte were generally lower than those on MDM, perhaps below a minimum threshold level necessary for efficient infection. Productive infection may be restricted to the small subset of monocytes that express relatively high levels of CCR5. Steady-state CCR5 mRNA levels also increased four- to fivefold during MDM differentiation. Infection of MDM by M-tropic HIV-1JRFL resulted in >10-fold-higher levels of p24, and MDM harbored >30-fold more HIV-1 DNA copies than monocytes. In the presence of the CCR5-specific monoclonal antibody (MAb) 2D7, virus production and cellular levels of HIV-1 DNA were decreased by >80% in MDM, indicating a block in viral entry. There was a direct association between levels of CCR5 and differentiation of monocytes to macrophages. Levels of CCR5 were related to monocyte resistance and macrophage susceptibility to infection because infection by the M-tropic strain HIV-1JRFL could be blocked by MAb 2D7. These results provide direct evidence that CCR5 functions as a coreceptor for HIV-1 infection of primary macrophages.  相似文献   

20.
The effect of SK&F 96365 (1-(beta-[3-(4-methoxyphenyl)propoxyl]-4- methoxyphenethyl)-1H-imidazole hydrochloride), a recently synthesized inhibitor of receptor-mediated calcium entry, was investigated on human hematopoietic cell lines. We found that treatment of the T-cell leukemia line Jurkat with SK&F 96365 inhibited the Ca2+ influx triggered by antibodies against the CD3/TCR complex, while the inositol trisphosphate-dependent Ca2+ release from intracellular stores remained intact. A 50% inhibition of the Ca2+ influx was obtained with 5 microM SK&F 96365, while higher concentrations of the drug blocked the CD3-dependent Ca2+ influx completely. In addition to its blocking of the Ca2+ influx, treatment with SK&F 96365 was found to accumulate mitotic cells. The drug (5 microM) imposed a total cell cycle arrest in G2/M. The mitosis block could be reversed by removal of the inhibitor from the cultures, while elevation of intracellular or extracellular Ca2+ did not restore cell cycle progression. This suggests that the cell cycle block induced by SK&F 96365 is not directly related to its action as an inhibitor of receptor-mediated calcium entry. Our findings indicate that SK&F 96365, in addition to its ability to inhibit receptor-triggered Ca2+ influx, offers a new method for imposing a reversible mitosis arrest in hematopoietic cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号