首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
殷东生  沈海龙 《生态学杂志》2016,27(8):2687-2698
耐荫性是植物在低光环境下的生存和生长能力,对森林植物群落演替起重要作用,植物对遮荫的适应机制已成为生态学的研究热点.本文综述了森林植物的耐荫性及其在形态和生理方面的适应性,分析了森林植物在生长性状、生物量分配、树冠结构、叶片形态生理、叶片解剖结构、光合参数、碳水化合物分配、水分和养分的利用等方面对遮荫产生的可塑性响应,最后对目前研究存在的问题进行了分析,展望了未来的研究内容和方向.  相似文献   

2.
Abstract Mortality, growth, gas exchange and biomass distribution were measured in the seedlings of 12 Chilean temperate rainforest angiosperm trees in two contrasting artificial light environments (150 and 12 μmoles m?2 s?1), in order to explore life history diversity in this forest type, and examine the physiological and/or morphological traits associated with interspecific variation in seedling performance. Gas exchange traits were measured only in the high‐light treatment (150 μmoles m?2 s?1), owing to the very small size of leaves in the low‐light treatment. Relative growth rates (RGR) in high light were strongly correlated with photosynthetic capacity (P< 0.0001). Mortality rates in low light had a strong positive correlation with light compensation point (P = 0.007) and photosynthetic capacity (P = 0.004). Furthermore, high‐light RGR was strongly positively correlated with low‐light mortality (P = 0.001). Biomass distribution traits showed little relationship with mortality or growth within either light level, except for a marginally significant positive correlation (P = 0.04) between leaf area ratio and mortality in low light. In view of the large interspecific differences in final size, the weak relationships between biomass distribution parameters and plant performance could be partially attributable to ontogenetic drift in these traits. Among taxa with high mortality rates in low light, short‐lived species (e.g. Aristotelia chilensis) had lower light compensation points, had greater phenotypic plasticity and grew much faster in both light environments than did longer‐lived species (Nothofagus dombeyi, Weinmannia trichosperma, Eucryphia cordifolia). Results support the view that survival of first‐year seedlings in low light is not enhanced by morphological traits that maximize growth potential (e.g. high leaf area ratio), and that leaf‐level gas exchange traits have an important role as determinants of interspecific variation in seedling performance. However, the limited range of interspecific variation observed in light compensation points indicates that other traits apart from those that we measured (e.g. carbon storage) must also be involved in seedling shade tolerance differences. The weak relationship between longevity and shade tolerance level among our 12 species suggests that it may not be feasible to ordinate life histories of Chilean temperate rainforest trees on a single axis of trait variation.  相似文献   

3.
For niche differences to maintain coexistence of sympatric species, each species must grow and/or survive better than each of the others in at least one set of conditions (i.e., performance trade‐offs). However, the extent of niche differentiation in tropical forests remains highly debated. We present the first test of performance trade‐offs for wild seedlings in a tropical forest. We measured seedling relative growth rate (RGR) and survival of four common native woody species across 18 light, substrate, and topography microhabitats over 2.5 years within Hawaiian montane wet forest, an ideal location due to its low species diversity and strong species habitat associations. All six species pairs exhibited significant performance trade‐offs across microhabitats and for RGR versus survival within microhabitats. We also found some evidence of performance equivalence, with species pairs having similar performance in 26% of comparisons across microhabitats. Across species, survival under low light was generally positively associated with RGR under high light. When averaged over all species, topography (slope, aspect, and elevation) explained most of the variation in RGR attributable to microhabitat variables (51–53%) followed by substrate type (35–37%) and light (11–12%). However, the relative effects of microhabitat differed among species and RGR metric (i.e., RGR for height, biomass, or leaf area). These findings indicate that performance trade‐offs among species during regeneration are common in low‐diversity tropical forest, although other mechanisms may better explain the coexistence of species with small performance differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号