首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An earlier report suggested that actin and myosin I alpha (MMIalpha), a myosin associated with endosomes and lysosomes, were involved in the delivery of internalized molecules to lysosomes. To determine whether actin and MMIalpha were involved in the movement of lysosomes, we analyzed by time-lapse video microscopy the dynamic of lysosomes in living mouse hepatoma cells (BWTG3 cells), producing green fluorescent protein actin or a nonfunctional domain of MMIalpha. In GFP-actin cells, lysosomes displayed a combination of rapid long-range directional movements dependent on microtubules, short random movements, and pauses, sometimes on actin filaments. We showed that the inhibition of the dynamics of actin filaments by cytochalasin D increased pauses of lysosomes on actin structures, while depolymerization of actin filaments using latrunculin A increased the mobility of lysosomes but impaired the directionality of their long-range movements. The production of a nonfunctional domain of MMIalpha impaired the intracellular distribution of lysosomes and the directionality of their long-range movements. Altogether, our observations indicate for the first time that both actin filaments and MMIalpha contribute to the movement of lysosomes in cooperation with microtubules and their associated molecular motors.  相似文献   

2.
3.
Mine I  Anota Y  Menzel D  Okuda K 《Protoplasma》2005,226(3-4):199-206
Summary. The configuration and distribution of polyadenylated RNA (poly(A)+ RNA) during cyst formation in the cap rays of Acetabularia peniculus were demonstrated by fluorescence in situ hybridization using oligo(dT) as a probe, and the spatial and functional relationships between poly(A)+ RNA and microtubules or actin filaments were examined by immunofluorescence microscopy and cytoskeletal inhibitor treatment. Poly(A)+ RNA striations were present in the cytoplasm of early cap rays and associated with longitudinal actin bundles. Cytochalasin D destroyed the actin filaments and caused a dispersal of the striations. Poly(A)+ RNA striations occurred in the cytoplasm of the cap rays up to the stage when secondary nuclei migrated into the cap rays, but they disappeared after the secondary nuclei were settled in their positions. At that time, a mass of poly(A)+ RNA was present around each of the secondary nuclei and accumulated rRNA. This mass colocalized with microtubules radiating from the surface of each secondary nucleus and disappeared when the microtubules were depolymerized by butamifos, which did not affect the configuration of actin filaments. These masses of poly(A)+ RNA continued to exist even after the cap ray cytoplasm divided into cyst domains. Thus two distinct forms of poly(A)+ RNA population, striations and masses, appear in turn at consecutive stages of cyst formation and are associated with distinct cytoskeletal elements, actin filaments and microtubules, respectively. Correspondence and reprints: Graduate School of Kuroshio Science, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan.  相似文献   

4.
The novel microtubule-interacting protein Mip-90 was originally isolated from HeLa cells by using affinity columns of agarose derivatized with peptides from the C-terminal regulatory domain on β-tubulin. Biochemical and immunocytochemical data have suggested that the association of Mip-90 with the microtubule system contributes to its cellular organization. Here we report the interaction patterns of Mip-90 with microtubules and actin filaments in interphase human fibroblasts. A polyclonal monospecific antibody against Mip-90 was used for immunofluorescence microscopy analysis to compare the distribution patterns of this protein with tubulin and actin. A detailed observation of fibroblasts revealed the colocalization of Mip-90 with microtubules and actin filaments. These studies were complemented with experiments using cytoskeleton-disrupting drugs which showed that colocalization patterns of Mip-90 with microtubules and actin filaments requires the integrity of these cytoskeletal components. Interestingly, a colocalization of Mip-90 with actin at the leading edge of fibroblasts grown under subconfluency was observed, suggesting that Mip-90 could play a role in actin organization, particularly at this cellular domain. Mip-90 interaction with actin polymers was further supportedin vitroby cosedimentation and immunoprecipitation experiments. The cosedimentation analysis indicated that Mip-90 bound to actin filaments with an association constantKa= 1 × 106M−1, while an stoichiometry Mip-90/actin of 1:12 mol/mol was calculated. Western blots of the immunoprecipitates revealed that Mip-90 associated to both actin and tubulin in fibroblasts extracts. These studies indicate that Mip-90, described as a microtubule-interacting protein, also bears the capacity to interact with the microfilament network, suggesting that it may play a role in modulating the interactions between these cytoskeletal filaments in nonneuronal cells.  相似文献   

5.
J R LaFountain 《Bio Systems》1975,7(3-4):363-369
An investigation of the spindle apparatus of crane-fly (Nephrotoma suturalis) spermatocytes has been undertaken using methods that permit combined light and electron microscopy of selected cells. At the ultrastructural level, spindles contain microtubules in a granular matrix. Microtubules have been classified as kinetochore microtubules (which connect to kinetochores of chromosomes) and non-kinetochore microtubules (not attached to kinetochores). Kinetochore microtubules are distributed in densely packed bundles, which are the birefringent chromosomal fibers seen in living cells. Actin filaments were not observed in spindles of unglycerinated cells or in cells fixed in glutaraldehyde containing tannic acid, which negatively stains F-actin in situ and thus can be used to aid the localization of actin filaments in non-muscle cells. The absence of actin filaments in the spindle coupled with their presence in the "contractile ring" of spermatocytes fixed during cytokinesis is evidence against the hypothesis that chromosome movements are microfilament-based. The results are compatible with the hypothesis that microtubules are involved in the mechanism of chromosome transport. The details of that mechanism remain to be clarified.  相似文献   

6.
Summary Changes in the spatial relationship between actin filaments and microtubules during the differentiation of tracheary elements (TEs) was investigated by a double staining technique in isolatedZinnia mesophyll cells. Before thickening of the secondary wall began to occur, the actin filaments and microtubules were oriented parallel to the long axis of the cell. Reticulate bundles of microtubules and aggregates of actin filaments emerged beneath the plasma membrane almost simultaneously, immediately before the start of the deposition of the secondary wall. The aggregates of actin filaments were observed exclusively between the microtubule bundles. Subsequently, the aggregates of actin filaments extended preferentially in the direction transverse to the long axis of the cell, and the arrays of bundles of microtubules which were still present between the aggregates of actin filaments became transversely aligned. The deposition of the secondary walls then took place along the transversely aligned bundles of microtubules.Disruption of actin filaments by cytochalasin B produced TEs with longitudinal bands of secondary wall, along which bundles of microtubules were seen, while TEs produced in the absence of cytochalasin B had transverse bands of secondary wall. These results indicate that actin filaments play an important role in the change in the orientation of arrays of microtubules from longitudinal to transverse. Disruption of microtubules by colchicine resulted in dispersal of the regularly arranged aggregates of actin filaments, but did not inhibit the formation of the aggregates itself, suggesting that microtubules are involved in maintaining the arrangement of actin filaments but are not involved in inducing the formation of the regularly arranged aggregates of actin filaments.These findings demonstrate that actin filaments cooperate with microtubules in controlling the site of deposition of the secondary wall in developing TEs.Abbreviations DMSO dimethylsulfoxide - EGTA ethyleneglycolbis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FITC fluorescein isothiocyanate - MSB microtubule-stabilizing buffer - PBS phosphate buffered saline - PIPES piperazine-N,N-bis(2-ethanesulfonic acid) - TE tracheary element  相似文献   

7.
In neurons and other animal cells, membrane-bound vesicles course rapidly along cytoskeletal filaments to reach their destinations. Based on a variety of in vivo studies it is becoming clear that the microtubule-based motor, kinesin (and its relatives), drive vesicle movements in axons. Surprisingly, some axonal membranes have the capacity to move on both microtubules and actin filaments.  相似文献   

8.
To assess the possible role of filaments in subcellular motility, particular cultured cells were studied by light and electron microscopy. Motile cell margins always contained meshworks of ~50 Å diam. filaments. Organelles moved within cytoplasm occupied by a meshwork of 50–100 Å filaments and microtubules. When cells were treated with cytochalasin B, movements of cell margins stopped, but organelle movements continued; electron microscopically, while subplasmalemmal filaments had disappeared, subcortical filaments and microtubules remained. When cells were treated with hypertonic medium, organelle movements ceased but marginal movements continued; electron microscopically, although cell margins contained normal filament arrays, few subcortical filaments remained. It is concluded that while cell margins are moved by a meshwork of filaments, organelle movement is mediated by a subcortical meshwork of filaments and microtubules.  相似文献   

9.
Gastrulation is a key developmental stage with striking changes in morphology. Coordinated cell movements occur to bring cells to their correct positions in a timely manner. Cell movements and morphological changes are accomplished by precisely controlling dynamic changes in cytoskeletal proteins, microtubules, and actin filaments. Among those cellular movements, epiboly produces the first distinct morphological changes in teleosts. In this review, I describe epiboly and its mechanics, and the dynamic changes in microtubule networks and actin structures, mainly in zebrafish embryos. The factors regulating those cytoskeletal changes will also be discussed.  相似文献   

10.
Bearer  E. L.  Reese  T. S. 《Brain Cell Biology》1999,28(2):85-98
Axoplasmic organelles move on actin as well as microtubules in vitro and axons contain a large amount of actin, but little is known about the organization and distribution of actin filaments within the axon. Here we undertake to define the relationship of the microtubule bundles typically found in axons to actin filaments by applying three microscopic techniques: laser-scanning confocal microscopy of immuno-labeled squid axoplasm; electronmicroscopy of conventionally prepared thin sections; and electronmicroscopy of touch preparations-a thin layer of axoplasm transferred to a specimen grid and negatively stained. Light microscopy shows that longitudinal actin filaments are abundant and usually coincide with longitudinal microtubule bundles. Electron microscopy shows that microfilaments are interwoven with the longitudinal bundles of microtubules. These bundles maintain their integrity when neurofilaments are extracted. Some, though not all microfilaments decorate with the S1 fragment of myosin, and some also act as nucleation sites for polymerization of exogenous actin, and hence are definitively identified as actin filaments. These actin filaments range in minimum length from 0.5 to 1.5 µm with some at least as long as 3.5 µm. We conclude that the microtubule-based tracks for fast organelle transport also include actin filaments. These actin filaments are sufficiently long and abundant to be ancillary or supportive of fast transport along microtubules within bundles, or to extend transport outside of the bundle. These actin filaments could also be essential for maintaining the structural integrity of the microtubule bundles.  相似文献   

11.
Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte.  相似文献   

12.
Myelin basic protein (MBP) is a multifunctional protein involved in maintaining the stability and integrity of the myelin sheath by a variety of interactions with membranes and other proteins. It assembles actin filaments and microtubules, can bind actin filaments and SH3-domains to a membrane surface, and may be able to tether them to the oligodendrocyte membrane and participate in signal transduction in oligodendrocytes/myelin. In the present study, we have shown that the 18.5 kDa MBP isoform can also bind microtubules to lipid vesicles in vitro. Phosphorylation of MBP at Thr94 and Thr97 (bovine sequence) by MAPK, and deimination of MBP (using a pseudo-deiminated recombinant form), had little detectable effect on its ability to polymerize and bundle microtubules, in contrast to the effect of these modifications on MBP-mediated assembly of actin. However, these modifications dramatically decreased the ability of MBP to tether microtubules to lipid vesicles. MBP and its phosphorylated and pseudo-deiminated variants were also able to bind microtubules to actin filaments. These results suggest that MBP may be able to tether microtubules to the cytoplasmic surface of the oligodendrocyte membrane, and that this binding can be regulated by post-translational modifications to MBP. We further show that MBP appears to be co-localized with actin filaments and microtubules in cultured oligodendrocytes, and also at the interface between actin filaments at the leading edge of membrane processes and microtubules behind them. Thus, MBP may also cross-link microtubules to actin filaments in vivo.  相似文献   

13.
The intracellular polymerization of cytoskeletal proteins into their supramolecular assemblies raises many questions regarding the regulatory patterns that control this process. Binding experiments using the ELISA solid phase system, together with protein assembly assays and electron microscopical studies provided clues on the protein-protein associations in the polymerization of tubulin and actin networks. In vitro reconstitution experiments of these cytoskeletal filaments using purified tau, tubulin, and actin proteins were carried out. Tau protein association with tubulin immobilized in a solid phase support system was inhibited by actin monomer, and a higher inhibition was attained in the presence of preassembled actin filaments. Conversely, tubulin and assembled microtubules strongly inhibited tau interaction with actin in the solid phase system. Actin filaments decreased the extent of in vitro tau-induced tubulin assembly. Studies on the morphological aspects of microtubules and actin filaments coexisting in vitro, revealed the association between both cytoskeletal filaments, and in some cases, the presence of fine filamentous structures bridging these polymers. Immunogold studies showed the association of tau along polymerized microtubules and actin filaments, even though a preferential localization of labeled tau with microtubules was revealed. The studies provide further evidence for the involvement of tau protein in modulating the interactions of microtubules and actin polymers in the organization of the cytsokeletal network.  相似文献   

14.
We added jasplakinolide to anaphase crane-fly spermatocytes and determined its effects on chromosome movement. Previous work showed that the actin depolymerizing agents cytochalasin D or latrunculin B blocked or slowed chromosome movements. We studied the effects of jasplakinolide, a compound that stabilizes actin filaments. Jasplakinolide had the same effect on movements of each half- bivalent in a separating pair of half-bivalents, but different half-bivalent pairs in the same cell often responded differently, even when the concentrations of jasplakinolide varied by a factor of two. Jasplakinolide had no effect on about 20% of the pairs, but otherwise caused movements to slow, or to stop, or, rarely, to accelerate. When cells were kept in jasplakinolide, stopped pairs eventually resumed movement; slowed pairs did not change their speeds. Confocal microscopy indicated that neither the distributions of spindle actin filaments nor the distributions of spindle microtubules were altered by the jasplakinolide. It is possible that jasplakinolide binds to spindle actin and blocks critical binding sites, but we suggest that jasplakinolide affects anaphase chromosome movement by preventing actin-filament depolymerization that is necessary for anaphase to proceed. Overall, our data indicate that actin is involved in one of the redundant mechanisms cells use to move chromosomes.  相似文献   

15.
Strategic control of mitochondrial movements and cellular distribution is essential for correct cell function and survival. However, despite being a vital process, mitochondrial movement in plant cells is a poorly documented phenomenon. To investigate the roles of actin filaments and microtubules on mitochondrial movements, Picea wilsonii pollen tubes were treated with two microtubule-disrupting drugs, two actin-disrupting drugs and a myosin inhibitor. Following these treatments, mitochondrial movements were characterized by multiangle evanescent wave microscopy and laser-scanning confocal microscopy. The results showed that individual mitochondria underwent three classes of linear movement: high-speed movement (instantaneous velocities >5.0 μm/s), low-speed movement (instantaneous velocities <5.0 μm/s) and variable-speed movement (instantaneous velocities ranging from 0.16 to 10.35 μm/s). 10 nM latrunculin B induced fragmentation of actin filaments and completely inhibited mitochondrial vectorial movement. Jasplakinolide treatment induced a 28% reduction in chondriome motility, and dramatically inhibition of high-speed and variable-speed movements. Treatment with 2,3-butanedione 2-monoxime caused a 61% reduction of chondriome motility, and the complete inhibition of high-speed and low-speed movements. In contrast to actin-disrupting drugs, microtubule-disrupting drugs caused mild effects on mitochondrial movement. Taxol increased the speed of mitochondrial movement in cortical cytoplasm. Oryzalin induced curved mitochondrial trajectories with similar velocities as in the control pollen tubes. These results suggest that mitochondrial movement at low speeds in pollen tubes is driven by myosin, while high-speed and variable-speed movements are powered both by actin filament dynamics and myosin. In addition, microtubule dynamics has profound effects on mitochondrial velocity, trajectory and positioning via its role in directing the arrangement of actin filaments.  相似文献   

16.
We have used low shear viscometry and electron microscopy to study the interaction between pure actin filaments and microtubules. Mixtures of microtubules having microtubule-associated proteins (MAPs) with actin filament have very high viscosities compared with the viscosities of the separate components. MAPs themselves also cause a large increase in the viscosity of actin filaments. In contrast, mixtures of actin filaments with tubulin polymers lacking MAPs have low viscosities, close to the sum of the viscosities of the separate components. Our interpretation of these observations is that there is an interaction between actin filaments and microtubules which requires MAPs. This interaction is inhibited by ATP and some related compounds. Electron micrographs of thin sections through mixtures of actin and microtubules show numerous close associations between the two polymers which may be responsible for their high viscosity.  相似文献   

17.
Formin family proteins coordinate actin filaments and microtubules. The mechanisms by which formins bind and regulate the actin cytoskeleton have recently been well defined. However, the molecular mechanism by which formins coordinate actin filaments and microtubules remains poorly understood. We demonstrate here that Isoform-Ib of the Formin-1 protein (Fmn1-Ib) binds to microtubules via a protein domain that is physically separated from the known actin-binding domains. When expressed at low levels in NIH3T3 fibroblasts, Fmn1-Ib protein localizes to cytoplasmic filaments that nocodazole disruption confirmed as interphase microtubules. A series of progressive mutants of Fmn1-Ib demonstrated that deletion of exon-2 caused dissociation from microtubules and a stronger association with actin membrane ruffles. The exon-2-encoded peptide binds purified tubulin in vitro and is also sufficient to localize GFP to microtubules. Exon-2 does not contain any known formin homology domains. Deletion of exon 5, 7, 8, the FH1 domain or FH2 domain did not affect microtubule binding. Thus, our results indicate that exon-2 of Fmn1-Ib encodes a novel microtubule-binding peptide. Since formin proteins associate with actin filaments through the FH1 and FH2 domains, binding to interphase microtubules through this exon-2-encoded domain provides a novel mechanism by which Fmn1-Ib could coordinate actin filaments and microtubules.  相似文献   

18.
Rat Kupffer cells contain the three major cytoskeletal components: microfilaments (MF), microtubules (MT), and intermediate filaments (IF) of the vimentin type. Previous cytomagnetometric data obtained from alveolar macrophages and rat Kupffer cells in culture provided evidence that actin filaments contribute to the movements of lysosomes. The lysosomal transport in living cells was affected, when the MFs were selectively disturbed, whereas the depolymerization of the MTs had no effect on the lysosomal movement measured by cytomagnetometric means. Immunofluorescence and ultrastructural studies of isolated and cultured rat Kupffer cells, presented in this paper, will investigate the relationship between lysosomes and the cytoskeleton. The principal filamentous structure in the peripheral cytoplasm of Kupffer cells in a dense meshwork of actin filaments. The dimension of the meshes combined with the dimensions of lysosomes implies the necessity of either (i) disintegration of the actin filament cross-links, (ii) depolarymerization and redistribution of MF's, or (iii) a displacement of actin filaments by the lysosomes during the organelle transport. The presence of microtubules in cytoplasmic protrusions and their track from the periphery to the perinuclear region during interphase might play a role in the transport mechanism of lysosomes, the more so because microtubules could often be demonstrated in closest association with lysosomes even in the first phase of endocytosis. The distribution pattern of vimentin, found as a dense interconnected framework surrounding the lysosomes like a basket, could play a role in positioning the organelles. The dynamic functions of MF's and MT's and their multifunctionality led to an adaptive and flexible organization of these filaments which may both be involved in lysosomal motion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Mullins D 《Nature cell biology》2011,13(12):1391-1392
To establish and maintain their internal organization, living cells must move molecules to their correct locations. Long-range intracellular movements are often driven by motor molecules moving along microtubules, similarly to trucks driving along a highway. Recent work demonstrates that some randomly dispersed cargos can generate actin filaments that form a connected network whose contraction drives collective cargo movement.  相似文献   

20.
Our analysis of known data reveals that translocations of passively movable cellular organelles from tiny granules up to large cell nuclei can be ascribed to transport by streaming cytoplasm. The various behaviours, such as velocity changes during more or less interrupted movements, forth and back shuttling and particle rotation result from different types of plasma circulation. Fast movements over long distances, as observed in the large characean internodial cells occur in strong streams generated by myosin in bundles of actin filaments in the direction of the barbed filament ends. Slow movements with frequent reversions of the direction are typical for neuronal axons, in which an anterograde plasma flow, produced in a thin layer of membrane-attached actin filaments, is compensated by a retrograde stream, produced by dynein activity in the central bundle of microtubules. Here particle rotation is due to steep flow velocity gradients, and frequent changes of particle movements result from minor particle displacements in radial directions. Similar shuttling of pigment granules in the lobes of epidermal chromatophores results from the same mechanism, whereby the centrifugal movement along astral microtubules is due to flow generated by excess of kinesin activity and the centripetal movement to the plasma recycling through the intermicrotubular space. If the streaming pattern is reversed by switching to excess dynein activity, the moving granules are trapped in the high microtubule density at the aster center. The presence of larger bodies in asters disturbs the regular, kinesin-dependent microtubule distribution in such a way that a superimposed centrifugal plasma flow develops in the microtubule-dense layer along them, which is recycled in the microtubule-free space, created by their presence. Consequently, at excess kinesin activity, nuclei, mitochondria as well as chromosome fragments move towards the aster center until they reach a dynamically stabilized position that depends on the local microtubule density. These various behaviours are not rationally explainable by models based on a mechanical stepping along microtubules or actin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号