首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Abstract Immunization with live-attenuated Staphylococcus aureus induced measurable levels of specific IgG and IgA in the lungs, but the pulmonary clearance of S. aureus in immunized mice did not differ from that of control mice. Aerosol exposure of mice to Pseudomonas aeruginosa induced a significant recruitment of polymorphonuclear leukocytes (PMNL) to the lungs in both immunized and control mice, whereas S. aureus challenge did not. However, challenge with a mixture of P. aeruginosa-S. aureus or exposure to an aerosol of Escherichia coli lipopolysaccharide (LPS) before S. aureus challenge induced PMNL migration and a significant enhancement of pulmonary clearance of S. aureus in immunized mice. The presence of both antibodies and PMNL was required for enhancement of S. aureus pulmonary clearance.  相似文献   

2.
Zhu WL  Lan H  Park Y  Yang ST  Kim JI  Park IS  You HJ  Lee JS  Park YS  Kim Y  Hahm KS  Shin SY 《Biochemistry》2006,45(43):13007-13017
To investigate the effect of Pro --> peptoid residue substitution on cell selectivity and the mechanism of antibacterial action of Pro-containing beta-turn antimicrobial peptides, we synthesized tritrpticin-amide (TP, VRRFPWWWPFLRR-NH(2)) and its peptoid residue-substituted peptides in which two Pro residues at positions 5 and 9 are replaced with Nleu (Leu peptoid residue), Nphe (Phe peptoid residue), or Nlys (Lys peptoid residue). Peptides with Pro --> Nphe (TPf) or Pro --> Nleu substitution (TPl) retained antibacterial activity but had significantly higher toxicity to mammalian cells. In contrast, Pro --> Nlys substitution (TPk) increased the antibacterial activity but decreased the toxicity to mammalian cells. Tryptophan fluorescence studies indicated that the bacterial cell selectivity of TPk is closely correlated with a preferential interaction with negatively charged phospholipids. Interestingly, TPk was much less effective at depolarizing of the membrane potential of Staphylococus aureus and Escherichia coli spheroplasts and causing the leakage of a fluorescent dye entrapped within negatively charged vesicles. Furthermore, confocal laser-scanning microscopy showed that TPk effectively penetrated the membrane of both E. coli and S. aureus and accumulated in the cytoplasm, whereas TP and TPf did not penetrate the cell membrane but remained outside or on the cell membrane. These results suggest that the bactericidal action of TPk is due to inhibition of the intracellular components after penetration of the bacterial cell membrane. In addition, TPK with Lys substitution effectively depolarized the membrane potential of S. aureus and E. coli spheroplasts. TPK induced rapid and effective dye leakage from bacterial membrane-mimicking liposomes and did not penetrate the bacterial cell membranes. These results suggested that the ability of TPk to penetrate the bacterial cell membranes appears to involve the dual effects that are related to the increase in the positive charge and the peptide's backbone change by peptoid residue substitution. Collectively, our results showed that Pro --> Nlys substitution in Pro-containing beta-turn antimicrobial peptides is a promising strategy for the design of new short bacterial cell-selective antimicrobial peptides with intracellular mechanisms of action.  相似文献   

3.
The effects of cefotaxime and EDTA on the reducing activity of Escherichia coli and Staphylococcus aureus cultures growing in the presence of lipoic acid (LA) were investigated by potential-time measurements. The potentiometric responses of E. coli cultures exposed to EDTA indicated enhanced transmembrane transport of LA as a consequence of the outer membrane permeabilization by the chelator, whereas EDTA exerted no effect on the reducing activity of S. aureus cultures. In the same way, cefotaxime stimulated the reducing activity of E. coli, but not that of S. aureus. These results suggest that cefotaxime, and, more generally, a great variety of beta-lactam antibiotics, are able to permeabilize the outer membrane of Gram-negative bacteria.  相似文献   

4.
The previous study of the action of gramicidin S on bacteria (Katsu, T., Kobayashi, H. and Fujita, Y. (1986) Biochim. Biophys. Acta 860, 608-619) prompted us to investigate further the structure-activity relationship of the gramicidin S analogues on membrane permeability. Two types of the gramicidin S analogues were used in the present study: (1) cyclo(-X-D-Leu-D-Lys-D-Leu-L-Pro-)2, where X = Gly, D-Leu and D-cyclohexylalanine (D-cHxAla); (2) N,N'-diacetyl derivative of gramicidin S (diacetyl-gramicidin S) which lacks a cationic moiety of gramicidin S. All the analogues have a beta-sheet conformation as gramicidin S. The following cellular systems were used: Staphylococcus aureus as Gram-positive bacteria, Escherichia coli as Gram-negative bacteria, human erythrocytes, rat liver mitochondria and artificial liposomal membranes. It was found that gramicidin S and one of the type 1 analogues having X = D-cHxAla induced the efflux of K+ through the cytoplasmic membrane of all types of the cells. In addition, these two peptides had the ability to lower the phase transition temperature of dipalmitoylphosphatidylcholine. Accordingly, it was concluded that, if peptides can expand greatly the membrane structure of neutral lipids which constitute main parts of the biological membrane, they can stimulate the permeability of cells without any selectivity. The action of the type 2 peptide, diacetyl-gramicidin S, was strongly cell dependent. Although this peptide stimulated the efflux of K+ from mitochondria, it did not do so efficiently, if at all, from S. aureus, E. coli and erythrocytes. In experiments using liposomes, diacetyl-gramicidin S increased markedly the permeability of liposomes composed of egg phosphatidylcholine. The presence of egg phosphatidylethanolamine or cholesterol reduced its activity. These results on liposomes explained well the low sensitivity of diacetyl-gramicidin S against E. coli and erythrocytes in terms of lipid constituents of the membranes. The mechanism of action of diacetyl-gramicidin S was discussed from the formation of a boundary lipid induced by this peptide.  相似文献   

5.
Monovalent cation proton antiporter-3 (Mrp) family antiporters are widely distributed and physiologically important in prokaryotes. Unlike other antiporters, they require six or seven hydrophobic gene products for full activity. Standard fluorescence-based assays of Mrp antiport in membrane vesicles from Escherichia coli transformants have not yielded strong enough signals for characterization of antiport kinetics. Here, an optimized assay protocol for vesicles of antiporter-deficient E. coli EP432 transformants produced higher levels of secondary Na(+)(Li(+))/H(+) antiport than previously reported. Assays were conducted on Mrps from alkaliphilic Bacillus pseudofirmus OF4 and Bacillus subtilis and the homologous antiporter of Staphylococcus aureus (Mnh), all of which exhibited Na(+)(Li(+))/H(+) antiport. A second paralogue of S. aureus (Mnh2) did not. K(+), Ca(2+), and Mg(2+) did not support significant antiport by any of the test antiporters. All three Na(+)(Li(+))/H(+) Mrp antiporters had alkaline pH optima and apparent K(m) values for Na(+) that are among the lowest reported for bacterial Na(+)/H(+) antiporters. Using a fluorescent probe of the transmembrane electrical potential (DeltaPsi), Mrp Na(+)/H(+) antiport was shown to be DeltaPsi consuming, from which it is inferred to be electrogenic. These assays also showed that membranes from E. coli EP432 expressing Mrp antiporters generated higher DeltaPsi levels than control membranes, as did membranes from E. coli EP432 expressing plasmid-borne NhaA, the well-characterized electrogenic E. coli antiporter. Assays of respiratory chain components in membranes from Mrp and control E. coli transformants led to a hypothesis explaining how activity of secondary, DeltaPsi-consuming antiporters can elicit increased capacity for DeltaPsi generation in a bacterial host.  相似文献   

6.
Dimeric derivative of antimicrobial peptide amide Temporin A (TA) was synthesized by using a new branching unit 3-N,N-di(3-aminopropyl)amino propanoic acid (DAPPA), which allows building of the parallelly symmetric alpha-helical structures. Antimicrobial effect of the original peptide amide, its monomeric carboxy (TAc) and novel dimeric (TAd) analogues were tested against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). Both TA and TAd completely inhibited the growth of S. aureus at the concentrations of 5 and 10 microM, respectively, whereas TAc did not show any inhibitory activity. The activities of TAc, TA and TAd correlate directly with the net charges of the molecules, +1, +2 and +4, respectively. Interestingly, TAd displayed antibacterial effect against E. coli at a concentration of 10 microM, where as monomeric TA did not show any activity at concentration as high as 20 microM. The results indicate that the novel structural modification improves the antibacterial properties of Temporin A especially towards Gram-negative bacteria.  相似文献   

7.
Interaction of wasp venom mastoparan with biomembranes   总被引:1,自引:0,他引:1  
Mastoparan-induced changes in the K+ permeability of rat peritoneal mast cells, human erythrocytes, Staphylococcus aureus and Escherichia coli were examined. Mastoparan did not efficiently increase the K+ permeability of cells except for S. aureus. The release of membrane phospholipids was also observed from S. aureus cells in the concentration range of the permeability enhancement. Mastoparan stimulated histamine release from mast cells, independently of a small efflux of K+. Mastoparan became markedly effective to E. coli cells whose outer membrane structure was chemically disrupted beforehand, showing that the peptide can enhance the permeability of the cytoplasmic membranes of both Gram-positive and -negative bacteria. In experiments using liposomes, mastoparan increased the permeability of the liposomes composed of egg phosphatidylethanolamine and egg phosphatidylglycerol, which are the lipid constituents of the cytoplasmic membrane of E. coli cells, while it showed a weak activity to the liposomes composed of egg phosphatidylcholine and cholesterol. The latter result related closely to the fact that this peptide acted weakly on erythrocytes and mast cells in which acidic lipids constitute a minor portion. Mastoparan decreased the phase transition temperature of dipalmitoylphosphatidylglycerol liposomes, but it did not affect that of dipalmitoylphosphatidylcholine liposomes. These results indicate that mastoparan penetrated into membranes mainly containing acidic phospholipids and disrupted the membrane structure to increase the permeability. The action of the wasp venom mastoparan was compared with that of a bee venom melittin.  相似文献   

8.
The study of primases from model organisms such as Escherichia coli , phage T7 and phage T4 has demonstrated the essential nature of primase function, which is to generate de novo RNA polymers to prime DNA polymerase. However, little is known about the function of primases from other eubacteria. Their overall low primary sequence homology may result in functional differences. To help understand which primase functions were conserved, primase and its replication partner helicase from the pathogenic Gram-positive bacteria Staphylococcus aureus were compared in detail with that of E. coli primase and helicase. The conserved properties were to primer initiation and elongation and included slow kinetics, low fidelity and poor sugar specificity. The significant differences included S. aureus primase having sixfold higher kinetic affinity for its template than E. coli primase under equivalent conditions. This naturally higher activity was balanced by its fourfold lower stimulation by its replication fork helicase compared with E. coli primase. The most significant difference between the two primases was that S. aureus helicase stimulation did not broaden the S. aureus primase initiation specificity, which has important biological implications.  相似文献   

9.
L-Proline enhanced the growth of Staphylococcus aureus in high-osmotic-strength medium, i.e., it acted as an osmoprotectant. Study of the kinetics of L-[14C]proline uptake by S. aureus NCTC 8325 revealed high-affinity (Km = 1.7 microM; maximum rate of transport [Vmax] = 1.1 nmol/min/mg [dry weight]) and low-affinity (Km = 132 microM; Vmax = 22 nmol/min/mg [dry weight]) transport systems. Both systems were present in a proline prototrophic variant grown in the absence of proline, although the Vmax of the high-affinity system was three to five times higher than that of the high-affinity system in strain 8325. Both systems were dependent on Na+ for activity, and the high-affinity system was stimulated by lower concentrations of Na+ more than the low-affinity system. The proline transport activity of the low-affinity system was stimulated by increased osmotic strength. The high-affinity system was highly specific for L-proline, whereas the low-affinity system showed a broader substrate specificity. Glycine betaine did not compete with proline for uptake through either system. Inhibitor studies confirmed that proline uptake occurred via Na(+)-dependent systems and suggested the involvement of the proton motive force in creating an Na+ gradient. Hyperosmotic stress (upshock) of growing cultures led to a rapid and large uptake of L-[14C]proline that was not dependent on new protein synthesis. It is suggested that the low-affinity system is involved in adjusting to increased environmental osmolarity and that the high-affinity system may be involved in scavenging low concentrations of proline.  相似文献   

10.
Antibacterial activity was detected in excretory-secretory products (ESP) of adult Trichuris suis cultured in vitro in serum-free media. Gram-negative bacteria (Campylobacter jejuni, Campylobacter coli, and Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) were sensitive to ESP. Susceptibility was dependent on the concentration of ESP but not on the inoculum size. Preliminary assessment of the mode of action suggests a bacteriocidal mechanism. This antibacterial activity was heat stable and resistant to digestion with pronase E and trypsin. Based on ultrafiltration experiments, the activity is less than 10,000 MW. This excreted/secreted antibacterial activity from T. suis is likely a component of a humoral defense system for this helminth.  相似文献   

11.
Surfactant protein B (SP-B) is secreted into the airspaces with surfactant phospholipids where it reduces surface tension and prevents alveolar collapse at end expiration. SP-B is a member of the saposin-like family of proteins, several of which have antimicrobial properties. SP-B lyses negatively charged liposomes and was previously reported to inhibit the growth of Escherichia coli in vitro; however, a separate study indicated that elevated levels of SP-B in the airspaces of transgenic mice did not confer resistance to infection. The goal of this study was to assess the antimicrobial properties of native SP-B and synthetic peptides derived from the native peptide. Native SP-B aggregated and killed clinical isolates of Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and group B streptococcus by increasing membrane permeability; however, SP-B also lysed RBC, indicating that the membranolytic activity was not selective for bacteria. Both the antimicrobial and hemolytic activities of native SP-B were inhibited by surfactant phospholipids, suggesting that endogenous SP-B may not play a significant role in alveolar host defense. Synthetic peptides derived from native SP-B were effective at killing both Gram-positive and Gram-negative bacteria at low peptide concentrations (0.15-5.0 microM). The SP-B derivatives selectively lysed bacterial membranes and were more resistant to inhibition by phospholipids; furthermore, helix 1 (residues 7-22) retained significant antimicrobial activity in the presence of native surfactant. These results suggest that the role of endogenous SP-B in host defense may be limited; however, synthetic peptides derived from SP-B may be useful in the treatment of bacterial pneumonias.  相似文献   

12.
Cellular Location of Degradative Enzymes in Staphylococcus aureus   总被引:4,自引:1,他引:3       下载免费PDF全文
Staphylococus aureus, ATCC 6538P, was fractionated into protoplast membranes, mesosomal vesicles, periplasm, and cytoplasm. These fractions and the culture fluid were then assayed for various degradative enzyme activities. They were not restricted to a single fraction nor dispersed homogeneously, but were distributed predominantly (on the basis of specific activity) as follows: nuclease in the culture fluid; alkaline phosphatase, 5'-nucleotidase, and acid phosphatase in the periplasm; adenosine triphosphatase in the protoplast membrane; and protease (low levels) in mesosomal vesicles. No significant esterase nor cell wall hydrolytic activity was found in any fraction. S. aureus 80/81 was studied for penicillinase activity after induction with benzyl penicillin; this enzyme was localized in the mesosomal vesicles. Electron microscopy did not reveal any ultrastructural changes associated with secretion of the extracellular fraction. Overall, these studies demonstrate that degradative enzymes are located in several surface compartments and that, therefore, the mesosome does not function as a prototype lysosome in S. aureus.  相似文献   

13.
The present study investigated the effects of microwave (MW) radiation applied under a sublethal temperature on Escherichia coli. The experiments were conducted at a frequency of 18 GHz and at a temperature below 40°C to avoid the thermal degradation of bacterial cells during exposure. The absorbed power was calculated to be 1,500 kW/m(3), and the electric field was determined to be 300 V/m. Both values were theoretically confirmed using CST Microwave Studio 3D Electromagnetic Simulation Software. As a negative control, E. coli cells were also thermally heated to temperatures up to 40°C using Peltier plate heating. Scanning electron microscopy (SEM) analysis performed immediately after MW exposure revealed that the E. coli cells exhibited a cell morphology significantly different from that of the negative controls. This MW effect, however, appeared to be temporary, as following a further 10-min elapsed period, the cell morphology appeared to revert to a state that was identical to that of the untreated controls. Confocal laser scanning microscopy (CLSM) revealed that fluorescein isothiocyanate (FITC)-conjugated dextran (150 kDa) was taken up by the MW-treated cells, suggesting that pores had formed within the cell membrane. Cell viability experiments revealed that the MW treatment was not bactericidal, since 88% of the cells were recovered after radiation. It is proposed that one of the effects of exposing E. coli cells to MW radiation under sublethal temperature conditions is that the cell surface undergoes a modification that is electrokinetic in nature, resulting in a reversible MW-induced poration of the cell membrane.  相似文献   

14.
The antibacterial factor from the body surface of the African giant snail, Achatina fulica Férussac, was isolated by DEAE-Toyopearl 650M ion exchange chromatography. The isolated preparation exhibited highly positive antibacterial activity both for the Gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus and for the Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, but it lost such activity when heated at 75 degrees C for 5 min. The antibacterial factor of the snail mucus was a glycoprotein whose molecular weight (MW) was about 160,000. It was composed of two subunits of MW 70,000-80,000.  相似文献   

15.
The present study examined the antimicrobial activity of the peptide ghrelin. Both major forms of ghrelin, acylated ghrelin (AG) and desacylated ghrelin (DAG), demonstrated the same degree of bactericidal activity against Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), while bactericidal effects against Gram-positive Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) were minimal or absent, respectively. To elucidate the bactericidal mechanism of AG and DAG against bacteria, we monitored the effect of the cationic peptides on the zeta potential of E. coli. Our results show that AG and DAG similarly quenched the negative surface charge of E. coli, suggesting that ghrelin-mediated bactericidal effects are influenced by charge-dependent binding and not by acyl modification. Like most cationic antimicrobial peptides (CAMPs), we also found that the antibacterial activity of AG was attenuated in physiological NaCl concentration (150mM). Nonetheless, these findings indicate that both AG and DAG can act as CAMPs against Gram-negative bacteria.  相似文献   

16.
A human follicular fluid (HFF) fraction prepared by Sephadex G-75 column chromatography has been previously shown by this laboratory to initiate the human sperm acrosome reaction (AR) in vitro. In the present report, the apparent molecular weight (MW) of this AR activity determined by a longer G-75 column than was used in the previous work was 50,000 ± 5,106. The G-75 Sephadex void volume fractions of some but not all HFF samples were also found to contain some AR-initiating activity. The occasional void volume activity was less potent than that of the 50,000 MW fraction and was not studied further. Further characterization of the 50,000 MW fraction was carried out. A time-course study demonstrated that maximum AR were obtained within 5 min following the addition of the 50,000 MW fraction. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by silver staining revealed that the 50,000 MW fraction was still a relatively crude preparation. Treatment of the 50,000 MW fraction with chloroform:methanol did not extract the AR-initiating activity into the lipid phase. The AR-initiating activity of the untreated 50,000 MW fraction was precipitated when it was boiled, but the activity was partially resistant to boiling after overnight incubation. Treatment of the 50,000 MW fraction with pronase E or with several glycosaminoglycan hydrolases did not destroy the activity. Pronase treatment resulted in a higher amount of boiling-resistant AR-initiating activity. The AR-initiating activity of the untreated 50,000 MW fraction was partially dialyzable, but the activity of an undialyzed fraction did not pass through an ultrafiltration membrane with a 10,000 MW cut-off. However, treatment of the 50,000 MW fraction with protease, peptide:N-glycosidase F, and to a lesser extent chondroitinase ABC yielded an active lower MW activity which could pass through such an ultrafiltration membrane. The lower MW activity released by peptide:N-glycosidase F eluted in the included volume (5,000–1,000) of a Sephadex G-25 column. Neutral hexose but not protein or peptide was detected in the G-25 peak of AR-initiating activity. These results suggest that the AR-initiating activity present in the 50,000 MW fraction of HFF: (1) is present either as two different AR factors (a high-MW factor and a low-MW, noncovalently bound factor) or as a single factor responsible for both the nondialyzable and dialyzable AR-initiating activities (the latter being enzymatically released from the former), and (2) may be at least partially associated with N-linked oligosaccharides of a glycoprotein or proteoglycan.  相似文献   

17.
Compared to Escherichia coli, the nitrogen-fixing soil cyanobacterium Anabaena sp. strain L-31 exhibited significantly superior abilities to survive prolonged and continuous heat stress and recover therefrom. Temperature upshift induced the synthesis of heat-shock proteins of similar molecular mass in the two microbes. However, in Anabaena sp. strain L-31 the heat-shock proteins (particularly the GroEL proteins) were synthesised throughout the stress period, were much more stable and accumulated during heat stress. In contrast, in E. coli the heat-shock proteins were transiently synthesised, quickly turned over and did not accumulate. Nitrogenase activity of Anabaena cells of sp. strain L-31 continuously exposed to heat stress for 7 days rapidly recovered from thermal injury, although growth recovery was delayed. Exposure of E. coli cells to >4.5 h of heat stress resulted in a complete loss of viability and the ability to recover. Marked differences in the synthesis, stability and accumulation of heat-shock proteins appear to distinguish these bacteria in their thermotolerance and recovery from heat stress.  相似文献   

18.
Organic extracts of the sponge Aplysina fistularis (Pallas 1766) were tested for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus) and Gram negative bacteria (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa). The minimal inhibitory concentration (MIC) and toxic activity of extract were determined. Susceptibility trials of organic fractions obtained by VLC: Hexane, EtOAc and CHCl3 showed that EtOAc fraction has antibacterial activity against E. coli, while CHCl3 fraction inhibited E. coli and S. aureus growth. The later refractioning of EtOAc fraction and the biodirected assays showed that fractions F12 and F13 of EtOAc/Hex and EtOAc F14 were bioactive against Gram positive and Gram negative bacteria. Only EtOAc/MeOH Sf2 from subfractionig of EtOAc F14 produced inhibition for E. coli and S. aureus. In Sf2 EtOAc/MeOH, MIC was moderate for S. aureus (MIC > 256 g/ml). F4 CHCl3/MeOH produced a high inhibition in S. aureus (MIC = 0.125 g/ml) and for E. coli (MIC > 16 g/ml). F10 CHCl3/MeOH showed a moderate activity against S. aureus (MIC > 128 g/ml) and low activity against E. coli (MIC = 512 g/ml). F10 CHCL3/MeOH did no present toxic activity against Artemia salina. The fractiorts F4 CHCL3/MeOH and Sf2 EtOAc/MeOH were toxic for this organism when the concentration was higher than 100 microg/ml. LC50 in both cases was 548.4 and 243.4 microg/ml respectively. Secondary metabolites of medium polarity obtained from A. fistularis have a wide spectrum of anti bacterial activity. Toxicity analysis suggests that only F10 CHCL3/MeOH has potential as an antimicrobial agent for clinical use.  相似文献   

19.
金黄色葡萄球菌重组GapC蛋白的GAPDH活性及免疫原性分析   总被引:1,自引:0,他引:1  
为研究金黄色葡萄球菌(Staphylococcus aureus)表面GapC蛋白的GAPDH活性、免疫原性及免疫保护作用, 应用PCR方法扩增出S. aureus的gapC基因, 插入到pQE-30载体相应位点, 构建重组质粒pQE/gapC。将其导入宿主菌E.coli M15(pREP4)后, IPTG诱导表达。重组蛋白纯化后进行GAPDH活性检测, 并与灭活全菌体分别免疫健康家兔。然后, 应用ELISA方法检测血清中IgG抗体水平及IFN-g、IL-4细胞因子浓度, 并用1.0×108CFU/mL S. aureus菌株Wood46对免疫家兔攻毒。SDS-PAGE结果显示, GapC蛋白在E. coli M15(pREP4)中获得表达; 经GAPDH活性检测及Western Blot检测, 重组蛋白具有较高的GAPDH活性和抗原特异性; 经ELISA检测, GapC蛋白及全菌体组兔血清中IgG抗体水平迅速升高, 并在加强免疫后第28天达到最高(1:64 000), 加强免疫后第14 d, 血清中细胞因子IFN-g和IL-4浓度与对照组相比, 显著升高(P<0.05), 而全菌体免疫组升高不明显(P>0.05); 攻毒结果为蛋白免疫组家兔获得一定的免疫保护(4/5)。以上结果表明, 表达的重组GapC蛋白具有GAPDH活性、较好的免疫原性及免疫保护力, 可作为深入研究S. aureus基因工程疫苗的良好靶向。  相似文献   

20.
Visible light induced photocatalytic inactivation of bacteria (Escherichia coli, Staphylococcus aureus, Enterococcus faecalis) and fungi (Candida albicans, Aspergillus niger) was tested. Carbon-doped titanium dioxide and TiO2 modified with platinum(IV) chloride complexes were used as suspension or immobilised at the surface of plastic plates. A biocidal effect was observed under visible light irradiation in the case of E. coli in the presence of both photocatalysts. The platinum(IV) modified titania exhibited a higher inactivation effect, also in the absence of light. The mechanism of visible light induced photoinactivation is briefly discussed. The observed detrimental effect of photocatalysts on various microorganism groups decreases in the order: E. coli > S. aureus approximately E. faecalis>C. albicans approximately A. niger. This sequence results most probably from differences in cell wall or cell membrane structures in these microorganisms and is not related to the ability of catalase production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号