首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperate and boreal tree species respond to low positive temperatures (LT) or a shortening of the photoperiod (SD) by inducing cold acclimation. One of the metabolic consequences of cold acclimation is an increase in fatty acid (FA) desaturation in membrane lipids, which allows functional membrane fluidity to be maintained at LT. The molecular mechanisms of FA desaturation were investigated in leaves of birch seedlings (Betula pendula) during cold acclimation. Four genes involved in FA biosynthesis were isolated: a 3-ketoacyl-ACP synthase II gene (BpKASII) involved in the elongation of palmitoyl-ACP to stearoyl-ACP, and three omega-3 FA desaturase genes (BpFAD3, BpFAD7, and BpFAD8) involved in the desaturation of linoleic acid (18:2) to alpha-linolenic acid (18:3). BpFAD7 was the main omega-3 FAD gene expressed in birch leaves, and it was down-regulated by LT under SD conditions. LT induced the expression of BpFAD3 and BpFAD8 and a synchronous increase in 18:3 occurred in glycerolipids. Changes in the photoperiod did not affect the LT-induced increase in 18:3 in chloroplast lipids (MGDG, DGDG, PG), but it modulated the LT response detected in extra-chloroplastic lipids (PC, PE, PI, PS). A decrease in the proportion of the 16-carbon FAs in lipids occurred at LT, possibly in relation to the regulation of BpKASII expression at LT. These results suggest that LT affects the whole FA biosynthesis pathway. They support a co-ordinated action of microsomal (BpFAD3) and chloroplast enzymes (BpFAD7, BpFAD8) in determining the level of 18:3 in extra-chloroplastic membranes, and they highlight the importance of dynamic lipid trafficking.  相似文献   

2.
Omega-3 fatty acid desaturase (FAD3)-catalyzed conversion of linoleic acid to linolenic acid (18:3) is an important step for the biosynthesis of fatty acids as well as the phytohormone jasmonic acid (JA) in plants. We report that silencing three microsomal isoforms of GmFAD3 enhanced the accumulation of Bean pod mottle virus (BPMV) in soybean. The GmFAD3-silenced plants also accumulated higher levels of JA, even though they contained slightly reduced levels of 18:3. Consequently, the GmFAD3-silenced plants expressed JA-responsive pathogenesis-related genes constitutively and exhibited enhanced susceptibility to virulent Pseudomonas syringae. Increased accumulation of BPMV in GmFAD3-silenced plants was likely associated with their JA levels, because exogenous JA application also increased BPMV accumulation. The JA-derived increase in BPMV levels was likely not due to repression of salicylic acid (SA)-derived signaling because the GmFAD3-silenced plants were enhanced in SA-dependent defenses. Furthermore, neither exogenous SA application nor silencing the SA-synthesizing phenylalanine ammonia lyase gene altered BPMV levels in soybean. In addition to the altered defense responses, the GmFAD3-silenced plants also produced significantly larger and heavier seed. Our results indicate that loss of GmFAD3 enhances JA accumulation and, thereby, susceptibility to BPMV in soybean.  相似文献   

3.
Reducing the linolenic acid (18?:?3ω? 3,6,9) concentration of soybean [Glycine max (L.) Merr.] oil may lessen the need for chemical hydrogenation and enhance flavor stability. Soybean genotypes A5 and A23 have reduced linolenic acid concentration compared with current cultivars. Seed linolenic acid is synthesized primarily by the ω-3 fatty acid desaturase located in the microsomes. The objective of this research was to study whether this enzyme has a role in reducing the fatty acid levels in the soybean genotypes A5 and A23. DNA from A5 and A23 was analyzed by gel-blot hybridization with a cDNA encoding the ω-3 fatty acid desaturase. A5 and lines selected from it have a DNA fragment missing compared to A23 and lines with normal linolenic acid concentration. Seventy F4:5 lines from a population segregating for linolenic acid concentration were scored for presence or absence of the fragment. The absence of the fragment was significantly (P?0.0001) associated with a reduced linolenic acid level and accounted for 67% of the variation for linolenic acid in the population. These results suggest that the reduced linolenic acid concentration in A5 was at least partially the result of a full or partial deletion of a microsomal ω-3 desaturase gene. No DNA polymorphisms were found for the desaturase gene in A23, so no mutations could be studied in this line.  相似文献   

4.
5.
6.
7.
8.
An endoplasmic reticulum-localized tomato omega-3 fatty acid desaturase gene (LeFAD3) was isolated and characterized with regard to its sequence, response to various temperatures and function in transgenic tomato plants. Northern blot analysis showed that LeFAD3 was expressed in all organs tested and was markedly abundant in roots. Meanwhile, the expression of LeFAD3 was induced by chilling stress (4 °C), but inhibited by high temperature (40 °C). The transgenic plants were obtained under the control of the cauliflower mosaic virus 35S promoter (35S-CaMV). Northern and western blot analyses confirmed that sense LeFAD3 was transferred into tomato genome and overexpressed. Level of linolenic acids (18:3) increased and correspondingly level of linoleic acid (18:2) decreased in leaves and roots. After chilling stress, the fresh weight of the aerial parts of transgenic plants was higher than that of the wild type (WT) plants, and the membrane system ultrastructure of chloroplast in leaf cell and all the subcellular organelles in root tips of transgenic plants kept more intact than those of WT. Relative electric conductivity increased less in transgenic plants than that in WT, and the respiration rate of the transgenic plants was notably higher than that of WT. The maximal photochemical efficiency of PSII (Fv/Fm) and the O2 evolution rate in WT decreased more than those in transgenic plants under chilling stress. Together with other data, results showed that the overexpression of LeFAD3 led to increased level of 18:3 and alleviated the injuries under chilling stress.  相似文献   

9.
A cDNA encoding omega-3 fatty acid desaturase was isolated from developing perilla seeds and characterized. On the basis of its deduced amino acid sequence comparison, this cDNA was assumed to be a new isoform of microsomal omega-3 fatty acid desaturase gene. Accumulation of the mRNA for this cDNA showed seed-specific expression.  相似文献   

10.
11.
12.
13.
14.
In our attempt to understand the cold shock response of Bacillus subtilis, we report on the role of the B. subtilis fatty acid desaturase (FA-D) Des during membrane adaptation to low temperatures and demonstrate its importance during cold shock. A des null mutant was constructed and analysed in comparison with its parental strain. Growth studies and large-scale comparative fatty acid (FA) analysis revealed a severe cold-sensitive phenotype of the des deletion mutant during the absence of isoleucine and showed that four unsaturated fatty acid (UFA) species differing in length, branching pattern and position of the double bond are synthesized in B. subtilis JH642 but not in the des null mutant. Apart from the lack of UFA synthesis, the FA-D deletion strain showed a dramatically altered saturated fatty acid (SFA) profile at the onset of the stationary growth phase in the presence of exogenous isoleucine sources. Expression of des integrated in trans at the amyE locus of the des deletion strain not only cured the cold-sensitive phenotype observed for the des mutant but allowed much better growth than in strain JH642 after a shift from 37 degrees C to 15 degrees C. These results show that, during cold shock adaptation, des expression can completely replace the isoleucine-dependent, long-term, FA branching adaptation mechanism. We conclude that the crucial aspect in cold adaptation of the cytoplasmic membrane is not its specific molecular composition but rather its physical status in terms of its fluidity.  相似文献   

15.
In 2000, Marquardt et al. (A. Marquardt, H. Stöhr, K. White, and B. H. F. Weber. 2000. cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics. 66: 176–183.) described the genomic structure of the fatty acid desaturase (FADS) cluster in humans. This cluster includes the FADS1 and FADS2 genes encoding, respectively, for the Δ5- and Δ6-desaturases involved in polyunsaturated fatty acid biosynthesis. A third gene, named FADS3, has recently been identified but no functional role has yet been attributed to the putative FADS3 protein. In this study, we investigated the FADS3 occurrence in rat tissues by using two specific polyclonal antibodies directed against the N-terminal and C-terminal ends of rat FADS3. Our results showed three potential protein isoforms of FADS3 (75 kDa, 51 kDa, and 37 kDa) present in a tissue-dependent manner. The occurrence of these FADS3 isoforms did not depend on the mRNA level determined by real-time PCR. In parallel, mouse tissues were also tested and showed the same three FADS3 isoforms but with a different tissue distribution. Finally, we reported the existence of FADS3 in human cells and tissues but different new isoforms were identified. To conclude, we showed in this study that FADS3 does exist under multiple protein isoforms depending on the mammalian tissues. These results will help further investigations to determine the physiological function of FADS3.  相似文献   

16.
17.
T Nishiuchi  T Hamada  H Kodama    K Iba 《The Plant cell》1997,9(10):1701-1712
The Arabidopsis FAD7 gene encodes a plastid omega-3 fatty acid desaturase that catalyzes the desaturation of dienoic fatty acids in membrane lipids. The mRNA levels of the Arabidopsis FAD7 gene in rosette leaves rose rapidly after local wounding treatments. Wounding also induced the expression of the FAD7 gene in roots. To study wound-responsive expression of the FAD7 gene in further detail, we analyzed transgenic tobacco plants carrying the -825 Arabidopsis FAD7 promoter-beta-glucuronidase fusion gene. In unwounded transformants, FAD7 promoter activity was restricted to the tissues whose cells contained chloroplasts. Activation of the FAD7 promoter by local wounding treatments was more substantial in stems (29-fold) and roots (10-fold) of transgenic plants than it was in leaves (approximately two-fold). Significant induction by wounding was observed in the overall tissues of stems and included trichomes, the epidermis, cortex, vascular system, and the pith of the parenchyma. Strong promoter activity was found preferentially in the vascular tissues of wounded roots. These results indicate that wounding changes the spatial expression pattern of the FAD7 gene. Inhibitors of the octadecanoid pathway, salicylic acid and n-propyl gallate, strongly suppressed the wound activation of the FAD7 promoter in roots but not in leaves or stems. In unwounded plants, exogenously applied methyl jasmonate activated the FAD7 promoter in roots, whereas it repressed FAD7 promoter activity in leaves. Taken together, wound-responsive expression of the FAD7 gene in roots is thought to be mediated via the octadecanoid pathway, whereas in leaves, jasmonate-independent wound signals may induce the activation of the FAD7 gene. These observations indicate that wound-responsive expression of the FAD7 gene in aerial and subterranean parts of plants is brought about by way of different signal transduction pathways.  相似文献   

18.
19.
Omega-3(ω-3) fatty acid desaturase transgenic pigs may improve carcass fatty acid composition. The use of transgenic pigs is also an excellent large animal model for studying the role of ω-3 fatty acids in the prevention and treatment of coronary heart disease and cancer. Transgenic pigs carrying synthesized fatty acid desaturase-1 gene (sFat-1) from Caenorhabditis briggsae by somatic cell nuclear transfer (SCNT) were produced for the first time in China. Porcine fetal fibroblast cells were transfected with a sFat-1 expression cassette by the liposome-mediated method. Transgenic embryos were reconstructed by nuclear transfer of positive cells into enucleated in vitro matured oocytes. A total of 1889 reconstructed embryos were transferred into 10 naturally cycling gilts. Nine early pregnancies were established, 7 of which went to term. Twenty-one piglets were born. The cloning efficiency was 1.1% (born piglets/transferred embryos). The integration of the sFat-1 gene was confirmed in 15 live cloned piglets by PCR and Southern blot except for 2 piglets. Expression of the sFat-1 gene in 12 of 13 piglets was detected with RT-PCR. The data demonstrates that an efficient system for sFat-1 transgenic cloned pigs was developed, which led to the successful production of piglets expressing the sFat-1 gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号