首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Burkholderia cenocepacia is a Gram‐negative opportunistic pathogen of patients with cystic fibrosis and chronic granulomatous disease. The bacterium survives intracellularly in macrophages within a membrane‐bound vacuole (BcCV) that precludes the fusion with lysosomes. The underlying cellular mechanisms and bacterial molecules mediating these phenotypes are unknown. Here, we show that intracellular B. cenocepacia expressing a type VI secretion system (T6SS) affects the activation of the Rac1 and Cdc42 RhoGTPase by reducing the cellular pool of GTP‐bound Rac1 and Cdc42. The T6SS also increases the cellular pool of GTP‐bound RhoA and decreases cofilin activity. These effects lead to abnormal actin polymerization causing collapse of lamellipodia and failure to retract the uropod. The T6SS also prevents the recruitment of soluble subunits of the NADPH oxidase complex including Rac1 to the BcCV membrane, but is not involved in the BcCV maturation arrest. Therefore, T6SS‐mediated deregulation of Rho family GTPases is a common mechanism linking disruption of the actin cytoskeleton and delayed NADPH oxidase activation in macrophages infected with B. cenocepacia.  相似文献   

2.

Background  

Metabolically versatile soil bacteria Burkholderia cepacia complex (Bcc) have emerged as opportunistic pathogens, especially of cystic fibrosis (CF). Previously, we initiated the characterization of the phenylacetic acid (PA) degradation pathway in B. cenocepacia, a member of the Bcc, and demonstrated the necessity of a functional PA catabolic pathway for full virulence in Caenorhabditis elegans. In this study, we aimed to characterize regulatory elements and nutritional requirements that control the PA catabolic genes in B. cenocepacia K56-2.  相似文献   

3.
Burkholderia cenocepacia is a gram-negative opportunistic pathogen that belongs to the Burkholderia cepacia complex. B. cenocepacia can survive intracellularly within phagocytic cells, and some epidemic strains produce a brown melanin-like pigment that can scavenge free radicals, resulting in the attenuation of the host cell oxidative burst. In this work, we demonstrate that the brown pigment produced by B. cenocepacia C5424 is synthesized from a homogentisate (HGA) precursor. The disruption of BCAL0207 (hppD) by insertional inactivation resulted in loss of pigmentation. Steady-state kinetic analysis of the BCAL0207 gene product demonstrated that it has 4-hydroxyphenylpyruvic acid dioxygenase (HppD) activity. Pigmentation could be restored by complementation providing hppD in trans. The hppD mutant was resistant to paraquat challenge but sensitive to H2O2 and to extracellularly generated superoxide anions. Infection experiments in RAW 264.7 murine macrophages showed that the nonpigmented bacteria colocalized in a dextran-positive vacuole, suggesting that they are being trafficked to the lysosome. In contrast, the wild-type strain did not localize with dextran. Colocalization of the nonpigmented strain with dextran was reduced in the presence of the NADPH oxidase inhibitor diphenyleneiodonium, and also the inducible nitric oxide inhibitor aminoguanidine. Together, these observations suggest that the brown pigment produced by B. cenocepacia C5424 is a pyomelanin synthesized from an HGA intermediate that is capable of protecting the organism from in vitro and in vivo sources of oxidative stress.  相似文献   

4.
Chronic lung disease caused by persistent bacterial infections is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). CF pathogens acquire antibiotic resistance, overcome host defenses, and impose uncontrolled inflammation that ultimately may cause permanent damage of lungs' airways. Among the multiple CF‐associated pathogens, Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria have become prominent contributors of disease progression. Here, we demonstrate that BcaA, a trimeric autotransporter adhesin (TAA) from the epidemic strain B. cenocepacia K56‐2, is a tumor necrosis factor receptor 1‐interacting protein able to regulate components of the tumor necrosis factor signaling pathway and ultimately leading to a significant production of the proinflammatory cytokine IL‐8. Notably, this study is the first to demonstrate that a protein belonging to the TAA family is involved in the induction of the inflammatory response during B. cenocepacia infections, contributing to the success of the pathogen. Moreover, our results reinforce the relevance of the TAA BcaA as a multifunctional protein with a major role in B. cenocepacia virulence.  相似文献   

5.
6.
Phagocytosis is an important component of innate immunity that contributes to the eradication of infectious microorganisms; however, successful bacterial pathogens often evade different aspects of host immune responses. A common bacterial evasion strategy entails the production of toxins and/or effectors that disrupt normal host cell processes and because of their importance Rho-family GTPases are often targeted. Burkholderia cenocepacia, an opportunistic pathogen that has a propensity to infect cystic fibrosis patients, is an example of a pathogenic bacterium that has only recently been shown to disrupt Rho GTPase function in professional phagocytes. More specifically, B. cenocepacia disrupts Rac and Cdc42 seemingly through perturbation of guanine nucleotide exchange factor function. Inactivation of Rac, Cdc42 and conceivably other Rho GTPases seriously compromises phagocyte function.  相似文献   

7.
CASP4/caspase-11-dependent inflammasome activation is important for the clearance of various Gram-negative bacteria entering the host cytosol. Additionally, CASP4 modulates the actin cytoskeleton to promote the maturation of phagosomes harboring intracellular pathogens such as Legionella pneumophila but not those enclosing nonpathogenic bacteria. Nevertheless, this non-inflammatory role of CASP4 regarding the trafficking of vacuolar bacteria remains poorly understood. Macroautophagy/autophagy, a catabolic process within eukaryotic cells, is also implicated in the elimination of intracellular pathogens such as Burkholderia cenocepacia. Here we show that CASP4-deficient macrophages exhibit a defect in autophagosome formation in response to B. cenocepacia infection. The absence of CASP4 causes an accumulation of the small GTPase RAB7, reduced colocalization of B. cenocepacia with LC3 and acidic compartments accompanied by increased bacterial replication in vitro and in vivo. Together, our data reveal a novel role of CASP4 in regulating autophagy in response to B. cenocepacia infection.  相似文献   

8.
A survey of Burkholderia cepacia complex (Bcc) species was conducted in water bodies of West Lake in China. A total of 670 bacterial isolates were recovered on selective media. Out of them, 39.6% (265 isolates) were assigned to the following species: Burkholderia multivorans, Burkholderia cenocepacia recA lineage IIIA, IIIB, Burkholderia stabilis, Burkholderia vietnamiensis, and Burkholderia seminalis while B. cenocepacia is documented as a dominant Bcc species in water of West Lake. In addition, all Bcc isolates tested were PCR negative for the cblA and esmR transmissibility marker genes except B. cenocepacia IIIB A8 which was positive for esmR genelater. The present study raises great concerns on the role of West Lake as a “reservoir” for potential Bcc pathogenic strains.  相似文献   

9.
Burkholderia cenocepacia, Burkholderia ambifaria, and Burkholderia pyrrocinia are the Burkholderia cepacia complex (Bcc) species most frequently associated with roots of crop plants. To investigate the ecophysiological diversity of these species, metabolic profiling of maize rhizosphere isolates was carried out by means of the Biolog system, using GN2 and SFN2 plates and different parameters related to optical density (OD). The metabolic profiles produced by the SFN2 and GN2 plates were identical, but the SFN2's narrower range of OD values and significantly longer reaction times made these plates less suitable for differentiation of isolates. Principal component analysis of maximum OD (ODM) and maximum substrate oxidation rate (μM) data generated by GN2 plates allowed the selection of a reduced number of carbon sources. Statistical analysis of ODM values highlighted marked differences between the metabolic profiles of B. cenocepacia and B. ambifaria, whereas metabolic profiles of B. pyrrocinia clustered very often with those of B. cenocepacia. Analysis of the μM parameter resulted in a slightly lower differentiation among the three Bcc species and a higher metabolic diversity within the single species, in particular within B. cenocepacia. Finally, B. cenocepacia and B. pyrrocinia showed generally higher oxidation rates than B. ambifaria on those GN2 substrates that commonly occur in maize root exudates.  相似文献   

10.
Phagocytosis is an important component of innate immunity that contributes to the eradication of infectious microorganisms; however, successful bacterial pathogens often evade different aspects of host immune responses. A common bacterial evasion strategy entails the production of toxins and/or effectors that disrupt normal host cell processes and because of their importance Rho-family GTPases are often targeted. Burkholderia cenocepacia, an opportunistic pathogen that has a propensity to infect cystic fibrosis patients, is an example of a pathogenic bacterium that has only recently been shown to disrupt Rho GTPase function in professional phagocytes. More specifically, B. cenocepacia disrupts Rac and Cdc42 seemingly through perturbation of guanine nucleotide exchange factor function. Inactivation of Rac, Cdc42 and conceivably other Rho GTPases seriously compromises phagocyte function.  相似文献   

11.
A survey of Burkholderia cepacia complex (Bcc) species was conducted in sputum from cystic fibrosis (CF) patients in China. One hundred and four bacterial isolates were recovered on B. cepacia selective agar and 42 of them were assigned to Bcc by PCR assays. The species composition of the Bcc isolates from CF sputum was analyzed by a combination of recA-restriction fragment length polymorphism assays, species-specific PCR tests and recA gene sequencing. The results revealed that the 42 Bcc isolates belong to B. cepacia, B. cenocepacia and B. contaminans while predominant Bcc species was B. cenocepacia. This is the first report of B. contaminans from CF sputum in China. In addition, results from this study showed that chitosan solution at 10, 25, 50 and 100 μg/ml markedly inhibited the growth of the 16 representative isolates from the three different Bcc species, which indicated that chitosan was a potential bactericide against Bcc bacteria.  相似文献   

12.
Burkholderia cenocepacia, a member of the B. cepacia complex (Bcc), is an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. Tyrosine phosphorylation has emerged as an important posttranslational modification modulating the physiology and pathogenicity of Bcc bacteria. Here, we investigated the predicted bacterial tyrosine kinases BCAM1331 and BceF and the low-molecular-weight protein tyrosine phosphatases BCAM0208, BceD, and BCAL2200 of B. cenocepacia K56-2. We show that BCAM1331, BceF, BCAM0208, and BceD contribute to biofilm formation, while BCAL2200 is required for growth under nutrient-limited conditions. Multiple deletions of either tyrosine kinase or low-molecular-weight protein tyrosine phosphatase genes resulted in the attenuation of B. cenocepacia intramacrophage survival and reduced pathogenicity in the Galleria mellonella larval infection model. Experimental evidence indicates that BCAM1331 displays reduced tyrosine autophosphorylation activity compared to that of BceF. With the artificial substrate p-nitrophenyl phosphate, the phosphatase activities of the three low-molecular-weight protein tyrosine phosphatases demonstrated similar kinetic parameters. However, only BCAM0208 and BceD could dephosphorylate BceF. Further, BCAL2200 became tyrosine phosphorylated in vivo and catalyzed its autodephosphorylation. Together, our data suggest that despite having similar biochemical activities, low-molecular-weight protein tyrosine phosphatases and tyrosine kinases have both overlapping and specific roles in the physiology of B. cenocepacia.  相似文献   

13.
14.
15.
Cystic fibrosis is the most common inherited lethal disease in Caucasians. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), of which the cftr ΔF508 mutation is the most common. ΔF508 macrophages are intrinsically defective in autophagy because of the sequestration of essential autophagy molecules within unprocessed CFTR aggregates. Defective autophagy allows Burkholderia cenocepacia (B. cepacia) to survive and replicate in ΔF508 macrophages. Infection by B. cepacia poses a great risk to cystic fibrosis patients because it causes accelerated lung inflammation and, in some cases, a lethal necrotizing pneumonia. Autophagy is a cell survival mechanism whereby an autophagosome engulfs non-functional organelles and delivers them to the lysosome for degradation. The ubiquitin binding adaptor protein SQSTM1/p62 is required for the delivery of several ubiquitinated cargos to the autophagosome. In WT macrophages, p62 depletion and overexpression lead to increased and decreased bacterial intracellular survival, respectively. In contrast, depletion of p62 in ΔF508 macrophages results in decreased bacterial survival, whereas overexpression of p62 leads to increased B. cepacia intracellular growth. Interestingly, the depletion of p62 from ΔF508 macrophages results in the release of the autophagy molecule beclin1 (BECN1) from the mutant CFTR aggregates and allows its redistribution and recruitment to the B. cepacia vacuole, mediating the acquisition of the autophagy marker LC3 and bacterial clearance via autophagy. These data demonstrate that p62 differentially dictates the fate of B. cepacia infection in WT and ΔF508 macrophages.  相似文献   

16.
Aims: To investigate mechanisms of osmotic tolerance in Burkholderia cenocepacia, a member of the B. cepacia complex (Bcc) of closely related strains, which is of clinical as well as environmental importance. Methods and Results: We employed NMR‐based metabolic profiling (metabolomics) to elucidate the metabolic consequences of high osmotic stress for five isolates of B. cenocepacia. The strains differed significantly in their levels of osmotic stress tolerance, and we identified three different sets of metabolic responses with the strains least impacted by osmotic stress exhibiting higher levels of the osmo‐protective metabolites glycine‐betaine and/or trehalose. Strains either increased concentrations or had constitutively high levels of these metabolites. Conclusions: Even within the small set of B. cenocepacia isolates, there was a surprising degree of variability in the metabolic responses to osmotic stress. Significance and impact of the study: The metabolic responses, and hence osmotic stress tolerance, vary between different B. cenocepacia isolates. This study provides a first look into the potentially highly diverse physiology of closely related strains of one species of the Bcc and illustrates that physiological or clinically relevant phenotypes are unlikely to be inferable from genetic relatedness within this species group.  相似文献   

17.
Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic bacteria were shown to produce the plant growth hormone indoleacetic acid, and this trait was more frequently found among bacteria from the stem. 16S rRNA gene sequence analysis revealed that the selected isolates of the endophytic bacterial community of sugarcane belong to the genera of Burkholderia, Pantoea, Pseudomonas, and Microbacterium. Bacterial isolates belonging to the genus Burkholderia were the most predominant among the endophytic bacteria. Many of the Burkholderia isolates produced the antifungal metabolite pyrrolnitrin, and all were able to grow at 37°C. Phylogenetic analyses of the 16S rRNA gene and recA gene sequences indicated that the endophytic Burkholderia isolates from sugarcane are closely related to clinical isolates of the Burkholderia cepacia complex and clustered with B. cenocepacia (gv. III) isolates from cystic fibrosis patients. These results suggest that isolates of the B. cepacia complex are an integral part of the endophytic bacterial community of sugarcane in Brazil and reinforce the hypothesis that plant-associated environments may act as a niche for putative opportunistic human pathogenic bacteria.  相似文献   

18.
Selective autophagy functions to specifically degrade cellular cargo tagged by ubiquitination, including bacteria. Strains of the Burkholderia cepacia complex (Bcc) are opportunistic pathogens that cause life‐threatening infections in patients with cystic fibrosis (CF) and chronic granulomatous disease (CGD). While there is evidence that defective macrophage autophagy in a mouse model of CF can influence B. cenocepacia susceptibility, there have been no comprehensive studies on how this bacterium is sensed and targeted by the host autophagy response in human macrophages. Here, we describe the intracellular life cycle of B. cenocepacia J2315 and its interaction with the autophagy pathway in human cells. Electron and confocal microscopy analyses demonstrate that the invading bacteria interact transiently with the endocytic pathway before escaping to the cytosol. This escape triggers theselective autophagy pathway, and the recruitment of ubiquitin, the ubiquitin‐binding adaptors p62 and NDP52 and the autophagosome membrane‐associated protein LC3B, to the bacterial vicinity. However, despite recruitment of these key autophagy pathway effectors, B. cenocepacia blocks autophagosome completion and replicates in the host cytosol. We find that a pre‐infection increase in cellular autophagy flux can significantly inhibit B. cenocepacia replication and that lower autophagy flux in macrophages from immunocompromised CGD patients could contribute to increased B. cenocepacia susceptibility, identifying autophagy manipulation as a potential therapeutic approach to reduce bacterial burden in B. cenocepacia infections.  相似文献   

19.
Previous studies have suggested that the airways of cystic fibrosis (CF) patients have elevated sodium chloride (NaCl) levels due to the malfunctioning of the CF transmembrane conductance regulator protein. For bacteria to survive in this high-salt environment, they must adjust by altering the regulation of gene expression. Among the different bacteria inhabiting the airways of CF patients is the opportunistic pathogen Burkholderia cenocepacia. Previous studies have indicated that B. cenocepacia produces a toxin and cable pili under high osmolar conditions. We used transposon mutagenesis to identify NaCl-regulated genes in the clinical strain B. cenocepacia K56-2. Six transconjugants were induced with increasing NaCl concentration. The DNA flanking the transposon was sequenced and five distinct open reading frames were identified encoding the following putative proteins: an integrase, an NAD-dependent deacetylase, TolB, an oxidoreductase, and a novel hypothetical protein. The collective results of this study provide important information about the physiology of B. cenocepacia when faced with osmotic stress and suggest the identity of significant virulence mechanisms in this opportunistic pathogen.  相似文献   

20.
Burkholderia cenocepacia is a virulent species belonging to the Burkholderia cepacia complex (Bcc) and one of the most problematic agents of chronic lung infection in cystic fibrosis patients. B. cenocepacia possesses a large panel of virulence traits that include trimeric autotransporter adhesins (TAAs). Such proteins are obligate homotrimeric anchored in the outer membrane. They are players in the adhesion events that occur between bacteria and biotic/abiotic surfaces. In this study, we constructed two insertional-mutants for TAA bcaC and Histidine kinase (HK) BCAM0218 genes, which are clustered together within the B. cenocepacia K56-2 TAA cluster. The bcaC-mutant affects B. cenocepacia adhesion to extracellular matrix proteins and red blood cells hemagglutination. BcaC contributes to enhancing B. cenocepacia K56-2 adhesion to bronchial epithelial cells. The expression of bcaC seems to affect biofilm formation negatively. Due to a BCAM0218 disruption, the bcaC expression increases significantly, indicating that they are functionally linked. The overexpression of bcaC in the BCAM0218-mutant background rescues at least part of the BcaC functions. Altogether, these findings reveal the multifunctionality of BcaC as a novel B. cenocepacia K56-2 virulence factor and postulate the involvement of a sensor HK (BCAM0218) in the control of this TAA gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号