首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas strains have shown promising results in biological control of late blight caused by Phytophthora infestans. However, the mechanism(s) and metabolites involved are in many cases poorly understood. Here, the role of the cyclic lipopeptide massetolide A of Pseudomonas fluorescens SS101 in biocontrol of tomato late blight was examined. Pseudomonas fluorescens SS101 was effective in preventing infection of tomato (Lycopersicon esculentum) leaves by P. infestans and significantly reduced the expansion of existing late blight lesions. Massetolide A was an important component of the activity of P. fluorescens SS101, since the massA-mutant was significantly less effective in biocontrol, and purified massetolide A provided significant control of P. infestans, both locally and systemically via induced resistance. Assays with nahG transgenic plants indicated that the systemic resistance response induced by SS101 or massetolide A was independent of salicylic acid signalling. Strain SS101 colonized the roots of tomato seedlings significantly better than its massA-mutant, indicating that massetolide A was an important trait in plant colonization. This study shows that the cyclic lipopeptide surfactant massetolide A is a metabolite with versatile functions in the ecology of P. fluorescens SS101 and in interactions with tomato plants and the late blight pathogen P. infestans.  相似文献   

2.
AIMS: To isolate endophytic fungi from vegetable plants and examine their in vivo anti-oomycete activity against Phytophthora infestans in tomato plants. METHODS AND RESULTS: Endophytic fungi were isolated from surface-sterilized plant tissues and anti-oomycete activity was measured by in vivo assay using tomato seedlings. Endophytic fungi showing potent anti-oomycete activity were identified by morphological characteristics and nuclear ribosomal ITS1-5.8S-ITS2 sequence analysis. A total of 152 isolates were obtained from 66 healthy tissue samples of cucumber, red pepper, tomato, pumpkin and Chinese cabbage and the fermentation broths of 23 isolates showed potent in vivo anti-oomycete activity against tomato late blight with control values over 90%. The Fusarium oxysporum strain EF119, which was isolated from roots of red pepper, showed the most potent disease control efficacy against tomato late blight. In dual-culture tests, it inhibited the growth of Pythium ultimum, P. infestans and Phytophthora capsici. CONCLUSIONS: Among endophytic fungi isolated from healthy tissues of vegetable plants, F. oxysporum EF119 showed the most potent in vivo anti-oomycete activity against tomato late blight and in vitro anti-oomycete activity against several oomycete pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: Endophytic fungi showing anti-oomycete activity in vitro and in vivo may be used as biocontrol agents particularly of tomato late blight.  相似文献   

3.
Late blight caused by the oomycete Phytophthora infestans is considered to be one of the most severe diseases of potato and tomato worldwide. Whilst current synthetic fungicides are efficient at controlling this disease, they are an environmental and economic burden. In line with EU directives to reduce the use of synthetic pesticides and increase the use of sustainable alternative disease control strategies that can form part of integrated pest management systems, practical biological control solutions are urgently needed. Despite the fact that there has been a large body of scientific research into microorganisms with potential for the biological control of late blight disease, relatively few commercial biocontrol agents, licensed to control late blight, exist. Furthermore, the practical uptake of those in Europe is lower than might be expected, suggesting that such solutions are not yet feasible, or effective. Here we review the scientific literature, focusing on the most recent developments in the hunt for efficient and sustainable biological control of late blight disease. We discuss the progress in our mechanistic understanding of mycoparasite–prey interactions, in the context of late blight and the challenges and limitations to the use of such knowledge in practical disease control within a European context.  相似文献   

4.
Late blight caused by the oomycete Phytophthora infestans is the most destructive disease in potato cultivation worldwide. New, more virulent P. infestans strains have evolved which overcome the genetic resistance that has been introgressed by conventional breeding from wild potato species into commercial varieties. R genes (for single-gene resistance) and genes for quantitative resistance to late blight are present in the germplasm of wild and cultivated potato. The molecular basis of single-gene and quantitative resistance to late blight is unknown. We have cloned R1, the first gene for resistance to late blight, by combining positional cloning with a candidate gene approach. The R1 gene is member of a gene family. It encodes a protein of 1293 amino acids with a molecular mass of 149.4 kDa. The R1 gene belongs to the class of plant genes for pathogen resistance that have a leucine zipper motif, a putative nucleotide binding domain and a leucine-rich repeat domain. The most closely related plant resistance gene (36% identity) is the Prf gene for resistance to Pseudomonas syringae of tomato. R1 is located within a hot spot for pathogen resistance on potato chromosome V. In comparison to the susceptibility allele, the resistance allele at the R1 locus represents a large insertion of a functional R gene.  相似文献   

5.
In this study, we report the isolation of a defensin gene, lm-def, isolated from the Andean crop 'maca' (Lepidium meyenii) with activity against the pathogen Phytophthora infestans responsible of late blight disease of the potato and tomato crops. The lm-def gene has been isolated by polymerase chain reaction (PCR) using degenerate primers corresponding to conserved regions of 13 plant defensin genes of the Brassicaceae family assuming that defensin genes are highly conserved among cruciferous species. The lm-def gene belongs to a small multigene family of at least 10 members possibly including pseudogenes as assessed by genomic hybridization and nucleotide sequence analyses. The deduced mature Lm-Def peptide is 51 amino acids in length and has 74-94% sequence identity with other plant defensins of the Brassicaceae family. The Lm-Def peptide was produced as a fusion protein using the pET-44a expression vector and purified using an immobilized metal ion affinity chromatography. The recombinant protein (NusA:Lm-Def) exhibited in vitro activity against P. infestans. The NusA:Lm-Def protein caused growth inhibition and hyphal damage at concentration not greater than 0.4 microM. In contrast, the NusA protein alone expressed and purified similarly did not show any activity against P. infestans. Therefore, these results indicate that the lm-def gene isolated from maca belong to the plant defensin family with activity against P. infestans. Its expression in potato, as a transgene, might help to control the late blight disease caused by P. infestans with the advantage of being of plant origin.  相似文献   

6.
马铃薯晚疫病生防木霉菌的筛选及鉴定   总被引:1,自引:0,他引:1  
曲远航  王琦  姚彦坡  黄振霖  李燕 《菌物学报》2014,33(6):1231-1241
采用马铃薯活体筛选法从268株木霉菌中筛选获得两株对致病疫霉有较强抑菌活性的木霉菌株R-5和T-15。这两株木霉菌代谢液可抑制病原菌生长及孢子囊萌发。温室防病试验发现,接种两株木霉菌可以减轻晚疫病的发生。田间试验进一步证明,两株木霉菌对晚疫病具有良好的田间防治效果,防效分别达到了72.4%和70.0%。经分子生物学方法鉴定,两株木霉菌分别为拟康氏木霉和棘孢木霉。实验构建的以活体筛选为基础的生防木霉菌筛选方法是一种可行高效的生防木霉菌筛选方式。  相似文献   

7.
In order to find reasons for the absence of fire blight in most countries of the Southern hemisphere, bark samples from apple and pear trees in orchards of the Western Cape region in South Africa were extracted for bacteria which could be antagonistic to Erwinia amylovora. Screening was done in the late growth season and mainly Gram-positive bacteria were isolated. Approximately half of them produced growth inhibition zones on a lawn of E. amylovora. Most isolates were classified as Bacillus megaterium by microbiological assays and in API 50 test systems. They were visualized in the light microscope as non-motile large rods. These strains may not be responsible for the absence of fire blight in orchards, but they may indicate unfavourable climatic conditions for Gram-negative bacteria including E. amylovora. They may reduce the ability of E. amylovora to establish fire blight and could also be useful for application in biological disease control.  相似文献   

8.
9.
致病疫霉拮抗菌株YR-7 的分离鉴定及其活性物质   总被引:1,自引:0,他引:1  
【目的】从黄河边的农田土壤中分离筛选拮抗致病疫霉的粘细菌,鉴定目标菌株,分析其发酵上清液的稳定性及对马铃薯晚疫病菌的抑制效果,为活性物质分离鉴定及抗马铃薯晚疫病菌生物农药的研发奠定基础。【方法】采用兔粪诱导法分离菌株,通过平板对峙法筛选对马铃薯晚疫病菌有拮抗作用的粘细菌,通过形态特征、生理生化特征以及16S r RNA基因序列分析对菌株进行鉴定。采用称重法测定菌株生长曲线,通过平皿法测定菌株不同生长时期发酵上清液对致病疫霉的菌丝生长抑制率和浓缩发酵上清液的稳定性。通过马铃薯离体叶片涂布浓缩发酵上清液和接种病原菌孢子悬浮液法,测定该菌株对马铃薯晚疫病的防病作用。【结果】从土壤样品中共分离获得7株粘细菌,其中4株拮抗致病疫霉,拮抗效果最强的为YR-7菌株,菌丝的生长抑制率为96%,该菌株被鉴定为Myxococcus xanthus。培养7 d后,菌株发酵上清液对致病疫霉的抑制活性趋于稳定。浓缩发酵上清液经30-50°C处理后,对致病疫霉菌丝的生长抑制率可达50.90%,高于50°C时抑菌活性逐渐下降,90°C处理后菌丝的生长抑制率仍可达25.45%。浓缩发酵上清液在p H 4.0-9.0条件下比较稳定,保持40.21%以上菌丝的生长抑制率,当p H4.0或p H9.0时,抗菌活性显著降低。活性物质不能被蛋白酶降解,其抗菌活性不受紫外线、自然光照射的影响。对马铃薯离体叶片的生防效果检测表明,YR-7的浓缩发酵上清液处理组叶片相对病斑面积仅为0.35%,对照组的相对病斑面积高达68.19%。【结论】粘细菌菌株YR-7可以产生抗马铃薯晚疫病菌的次生代谢产物,抗菌活性物质具有较好的稳定性,可以有效抑制致病疫霉侵染马铃薯叶片,具有开发成抗马铃薯晚疫病生物农药的潜在价值。  相似文献   

10.
徐铮  张倩  李克文  徐虹 《微生物学报》2021,61(2):279-291
乳果糖是由D-半乳糖和D-果糖两个基团通过β-1,4糖苷键连接而成的还原型二糖;乳果糖口服液具有治疗慢性便秘和肝性脑病的功效,在100多个国家作为常见非处方药(OTC)使用,需求量十分巨大;乳果糖还可以作为益生元改善人体肠道菌群关系。乳果糖的生产依赖化学法,其催化剂对人体有害,下游分离难度大。近年来,纤维二糖差向异构酶被发现能够高效催化乳糖制备乳果糖,该技术绿色环保、步骤简单,具有很强的产业化前景。本文结合自身研究经历对纤维二糖差向异构酶的研发情况进行总结,并综述了乳果糖酶法制备技术的现状。  相似文献   

11.
Some Pseudomonas aurantiaca strains have been found to facilitate plant growth. A P. aurantiaca JD37 strain isolated from a suburb of Shanghai, China, was found to effectively colonize the rhizosphere soil and internal roots of maize (Zea mays L.) and promote maize growth. Agar diffusion assays and biocontrol effect experiments showed that strain JD37 had significant antagonistic activity against Bipolaris maydis, as well as a high biocontrol effect on southern maize leaf blight caused by B. maydis. PCR detection, associated with reverse-phase high-performance liquid chromatography assays, showed that strain JD37 might produce a number of important antibacterial substances, such as phenazine-1-carboxylic acid, pyrrolnitrin and 2,4-diacetylphloroglucinol. The crude bacterial extracts and the cell-free supernatant of strain JD37 were found to induce resistance in maize against B. maydis and reduce plant disease. Our results indicate the potential of some bacteria for producing bacterial compounds that serve as inducers of disease resistance, which is an attractive alternative to the application of chemical fertilizers, pesticides and supplement in agricultural practices.  相似文献   

12.
Plant diseases, caused by various microorganisms, including viruses, bacteria, fungi, protozoa and nematodes, affect agricultural practices and result in significant crop losses. Fungal pathogens are the major cause of plant diseases and infect most plants. Agrochemicals play a significant role in plant disease management to ensure a sustainable and productive agricultural system. However, the intensive use of chemicals has adverse effects on humans and ecosystem functioning and also reduces agricultural sustainability. A sustainable agriculture is achieved through reduction or elimination of fertilizers and agrochemicals, resulting in minimal impact to the environment. Recently, the use of antagonistic endophytes as biocontrol agents is drawing special attention as an attractive option for management of some plant diseases, resulting in minimal impact to the environment. Endophytes that resides asymptomatically within a plant, have the potential to provide a source of candidate strains for potential biocontrol applications. This review addresses biocontrol methods using endophytic fungi such as Colletotrichum, Cladosporium, Fusarium, Pestalotiopsis and Trichoderma species as an attractive option for management of some plant diseases. Potential endophytes are screened in vitro and in vivo to test their antagonistic actions by different mechanisms, including mycoparasitism, production of lytic enzymes and/or antibiotics and induction of plant defenses. Currently, efforts are being made to commercialize these biocontrol agents. A continued research pipeline consisting of screening, in vitro and in vivo testing, biomass production and commercialization of endophytes as biocontrol agents may contribute to sustainable agriculture.  相似文献   

13.
Agricultural chemical companies have invested in the discovery and development of biological pesticides to complement synthetic pesticides for the control of insects, diseases, and weeds on agronomic and horticultural crops. For plant disease control, companies envisage biological fungicides entering markets where they have the best chance of performing and which are most receptive to using biological control methods. Fewer regulatory requirements can mean faster registration for a biological than a synthetic pesticide. However, industry’s requirements for competitive performance, effective formulations, and economic production can mean significant investments in time and money for a biological pesticide, although total investment may be less than for a synthetic pesticide. One biocontrol project in which industry has invested is baculoviruses for insect control. Insect baculoviruses, genetically modified to kill insects faster than wild-type viruses, are attractive biocontrol agents because their selectivity to insect pests and safety to beneficial insects and mammals enable them to compete with synthetic insecticides. Industry is looking for similar biocontrol opportunities in disease control. Biocontrol agents for seedling disease, root rot, and postharvest disease control have been registered by the EPA and are trying to compete with synthetic fungicides for market share. To date, effective biocontrol agents have not been identified for the control of serious foliar diseases, such as grape downy mildew, potato late blight, wheat powdery mildew, and apple scab. Farmers must rely on synthetic fungicides and agronomic methods to control these diseases for the foreseeable future. Received 06 February 1997/ Accepted in revised form 01 June 1997  相似文献   

14.
The concept of using bacteriophages (bacterial viruses) as biocontrol agents in pest management emerged shortly after their discovery. Although research on phage-based biopesticides temporarily stopped with the advent of antibiotics, the appearance of antibiotic resistant bacterial strains led to a renewed interest in phage therapy for control of plant diseases. In the past twenty years numerous successful experiments have been reported on bacteriophage-based biocontrol measures, and several comprehensive studies have recently been published discussing detailed results of phage application practices in pest management, mainly from North American authors. The present review focuses on bacteriophage-mediated control of fire blight (caused by Erwinia amylovora (Burill) Winslow et al.), the most devastating bacterial disease of pome fruits. Research results from North America are discussed along with recent data from European laboratories.  相似文献   

15.
The ecological role of soil streptomycetes within the plant root environment is currently gaining increased attention. This review describes our recent advances in elucidating the complex interactions between streptomycetes, plants, pathogenic and symbiotic microorganisms. Streptomycetes play diverse roles in plant-associated microbial communities. Some act as biocontrol agents, inhibiting plant interactions with pathogenic organisms. Owing to the antagonistic properties of streptomycetes, they exert a selective pressure on soil microbes, which may not always be for plant benefit. Others promote the formation of symbioses between plant roots and microbes, and this is in part due to their direct positive influence on the symbiotic partner, expressed as, e.g., promotion of hyphal elongation of symbiotic fungi. Recently, streptomycetes have been identified as modulators of plant defence. By repressing plant responses to pathogens they facilitate root colonisation with pathogenic fungi. In contrast, other strains induce local and systemic resistance against pathogens or enhance plant growth. In conclusion, while streptomycetes have a clear potential of acting as biocontrol agents, care has to be taken to avoid strains that select for virulent pathogens or enhance disease development. We argue towards the use of an integrated screening approach in the search for efficient biocontrol agents, including assays on in vitro antagonism, plant growth, and disease suppression.  相似文献   

16.
Late blight is the most devastating potato disease and it also causes serious yield loss in tomato.Several disease resistance genes (R genes) to late blight have been cloned from potato in the past decade.However,the resistance mechanisms remain elusive.Tomato and potato belong to the botanical family Solanaceace and share remarkably conserved genome structure.Since tomato is a model system in genetic and plant pathology research,we used tomato to develop a powerful mutant screening system that will greatly facilitate the analysis of the signaling pathway of resistance to Phytophthora infestans.First we proved that the R3a transgenic tomatoes developed specific hypersensitive cell death response (HR) to P.infestans strains carrying the corresponding avirulence gene Avr3a,indicating that the signaling pathway from the R3a-Avr3a recognition to HR is conserved between potato and tomato.Second,we generated transgenic tomatoes carrying both R3a and Avr3a genes,with the latter under the control of a glucocorticiod-inducible promoter.Dexamethasone induced expression of Avr3a and resulted in localized HR.This versatile system can be used to construct a mutant library to screen surviving mutants whose resistance signal transduction was interrupted,providing the basis to identify key genes involved in the resistance to late blight in Solanaceae.  相似文献   

17.
Antibiotic production by bacterial biocontrol agents   总被引:35,自引:0,他引:35  
Interest in biological control of plant pathogens has been stimulated in recent years by trends in agriculture towards greater sustainability and public concern about the use of hazardous pesticides. There is now unequivocal evidence that antibiotics play a key role in the suppression of various soilborne plant pathogens by antagonistic microorganisms. The significance of antibiotics in biocontrol, and more generally in microbial interactions, often has been questioned because of the indirect nature of the supporting evidence and the perceived constraints to antibiotic production in rhizosphere environments. Reporter gene systems and bio-analytical techniques have clearly demonstrated that antibiotics are produced in the spermosphere and rhizosphere of a variety of host plants. Several abiotic factors such as oxygen, temperature, specific carbon and nitrogen sources, and microelements have been identified to influence antibiotic production by bacteria biocontrol agents. Among the biotic factors that may play a determinative role in antibiotic production are the plant host, the pathogen, the indigenous microflora, and the cell density of the producing strain. This review presents recent advances in our understanding of antibiotic production by bacterial biocontrol agents and their role in microbial interactions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
In previous investigations an ethanolic plant extract from Glycyrrhiza glabra (2.5% w/v) showed 100% efficacy against late blight (Phytophthora infestans) on detached tomato leaves. Based on these findings, the objective of this work was to investigate the effect of this extract against different important plant pathogenic fungi. Tests were carried out on potted plants. Against P. infestans, efficacies of 75% and 58% were achieved on tomato and potato plants with 5% extract concentration, respectively. Against another Oomycete, Pseudoperonospora cubensis, on cucumber, application of a 2.5% extract led to an efficacy of above 90%. The EC50-value was calculated to be 0.5% In a trial on beans against bean rust (Uromyces appendiculatus), G. glabra extract (5% concentration) showed 92% efficacy. In contrast, against powdery mildew on cucumber (Podosphaera xanthii), no disease reduction was found. Overall, the results indicate a high potential for the extract of G. glabra to control a number of important plant pathogens.  相似文献   

19.
Phytophthora infestans (Mont.) de Bary is infamous as the causal agent of the late blight epidemic contributing to the Irish potato famine of the mid 19th century and remains agriculture's most destructive disease as new mutations and migrations confound control measures. In efforts to develop resistant varieties, a somatic hybrid (the Wisconsin J series) between potato (Solanum tuberosum) and a wild relative (Solanum bulbocastanum) has been found to convey durable resistance against the pathogen. We screened the total protein (100 microg ml(-1)) of somatic hybrid varieties J138, J138A12, J101K12, J103K12, and J101K9 for in vitro spore germination inhibition of P. infestans. Since J138 exhibited maximum inhibition at 150 microg ml(-1) in comparison to other varieties, we purified a 40 kD protein from J138 tubers by assaying its ability to inhibit spore germination in P. infestans spores. The highly purified protein was able to inhibit P. infestans spore germination by 70% at the 2.5 microg ml(-1) concentration. The N-terminal sequence of this protein was found to have exact amino acid homology to patatin, the major storage protein of potato tubers. The inhibitory protein has the same molecular weight as patatin and cross-reacts with patatin antibodies. The infection of J138 plants with spores of P. infestans under greenhouse conditions showed that patatin is expressed in stem tissue 72 h after the plant is inoculated with field isolates of P. infestans (US8). In this communication, we report the purification, characterization and antifungal activity against spores of P. infestans of patatin-J from potato tubers.  相似文献   

20.
In this study, more than 150 bacteria showing antagonistic properties against bacterial and fungal pathogens of the tomato plant were isolated and characterized. The most efficient agents against these phytopathogenic microorganisms belong to the genus Bacillus: the best biocontrol isolates were representatives of Bacillus subtilis, B. mojavensis and B. amyloliquefaciens species. They intensively produced fengycin or/and surfactin depsipeptide antibiotics and also proved to be excellent protease secretors. It was proved, that the selected strains were able to use ethylenethiourea (ETU) as sole nitrogen source. These antagonistic and ETU-degrading Bacillus strains can be applied as biocontrol and also as bioremediation agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号