首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a microencapsulation selection method which allows the rapid and quantitative screening of >10(6) yeast cells for enhanced secretion of Aspergillus awamori glucoamylase. The method provides a 400-fold single-pass enrichment for high-secreting mutants, and can be straightforwardly adapted for application to growth-based selection schemes with other microorganisms and enzymes. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
Bolognese CP  McGraw P 《Plant physiology》2000,124(4):1800-1813
Saccharomyces cerevisiae opi3 mutant strains do not have the phospholipid N-methyltransferase that catalyzes the two terminal methylations in the phosphatidylcholine (PC) biosynthetic pathway. This results in a build up of the intermediate phosphatidylmonomethylethanolamine, causing a temperature-sensitive growth phenotype. An Arabidopsis cDNA library was used to isolate three overlapping plasmids that complemented the temperature-sensitive phenotype. Phospholipid analysis showed that the presence of the cloned cDNA caused a 65-fold reduction in the level of phosphatidylmonomethylethanolamine and a significant, though not equivalent, increase in the production of PC. Sequence analysis established that the cDNA was not homologous to OPI3 or to CHO2, the only other yeast phospholipid N-methyltransferase, but was similar to several other classes of methyltransferases. S-adenosyl-Met:phospho-base N-methyltransferase assays revealed that the cDNA catalyzed the three sequential methylations of phospho-ethanolamine to form phospho-choline. Phospho-choline is converted to PC by the CDP-choline pathway, explaining the phenotype conferred upon the yeast mutant strain by the cDNA. In accordance with this the gene has been named AtNMT1. The identification of this enzyme and the failure to isolate a plant phospholipid N-methyltransferase suggests that there are fundamental differences between the pathways utilized by yeast and by some plants for synthesis of PC.  相似文献   

3.
4.
S Kleff  B Kemper    R Sternglanz 《The EMBO journal》1992,11(2):699-704
An assay was developed that detected DNA cruciform cutting endonuclease activity in crude extracts of Saccharomyces cerevisiae. A collection of temperature-sensitive strains was screened using this assay, and a mutant lacking the activity was found. The mutation leading to the enzymatic defect was mapped to the left arm of chromosome XI within 3 cM of the centromere. Cloning of the gene for this endonuclease was achieved by chromosome walking from the nearby PUT3 locus. The gene, called CCE1 (cruciform cutting endonuclease), was sequenced and found to have an open reading frame encoding a 41 kDa protein. The amino acid sequence of this eukaryotic endonuclease shows homology neither to its prokaryotic counterparts nor to other proteins in available databases. A cce1 null mutant has no obvious growth defect, and despite the ability of the CCE1 enzyme to cleave Holliday junction analogs, the mutant shows no defect in meiotic or mitotic recombination. A second cruciform cutting activity was detected in extracts from a cce1 null mutant, indicating that yeast has at least two such enzymes. The only phenotype observed for cce1 mutants is a higher than normal frequency of appearance of petite cells, suggesting that the CCE1 protein is important for the maintenance of mitochondrial DNA.  相似文献   

5.
Mak mutants of yeast: mapping and characterization.   总被引:6,自引:0,他引:6       下载免费PDF全文
Killer strains of Saccharomyces cerevisiae are those carrying a 1.5 x 10(6)-dalton double-stranded (ds) ribonucleic acid (RNA) (M) in virus-like particles and secreting a protein toxin. Most yeast (koller or not) also carry a 3 x 10(6)-dalton dsRNA (L). We have mapped mutations in eight of the chromosomal genes needed for maintaining M (mak genes). The mak genes are widely distributed on the yeast map, with no multigene complexes. We show that mutants defective in these and other mak genes lose M dsRNA, but not L dsRNA. The mak3-1 mutation results in markedly decreased cellular levels of L dsRNA, but mak3-1 stains do not lose L dsRNA completely. Mutation of mak16 results in temperature-sensitive growth, whereas mutations in mak13, mak15, mak17, mak20, mak22, and mak27 result in slow growth at any temperature. No effect of mak mutations on mating, meiosis, sporulation, germination, homothallism, or ultraviolet sensitivity has been found. The specificity of mak mutations is discussed.  相似文献   

6.
Hygromycin B is an aminoglycoside antibiotic that inhibits protein synthesis in prokaryotes and eukaryotes. Twenty-four hygromycin B-resistants mutants were isolated from sake yeast, and were divided into three different degrees of strength according to hygromycin B resistance. Three of four hygromycin B strongly resistant mutants produced increased amounts of isoamyl acetate in sake brewing test, although isoamyl alcohol levels remained unchanged. Many hygromycin B-resistants mutants showed higher E/A ratios than K-701 in culture with koji extract medium. Strain HMR-18 produced the largest amount of isoamyl acetate, and its alcohol acetyltransferase (AATFase) activity was 1.3-fold that of K-701. DNA microarray analysis showed that many genes overexpressed in HMR-18 were involved in stress responses (heat shock, low pH, and so on) but HMR-18 showed thermo- and acid-sensitivity. It was strongly resistant to hygromycin B and another aminoglycoside antibiotic, G418.  相似文献   

7.
Genomic DNA prepared from erythrocyte cultures of Babesia bovis merozoites was digested with mung bean nuclease and used to construct a lambda gt11 expression library of B. bovis recombinants. Immunoscreening with two polyclonal antibody probes detected multiple recombinants from which two, designated Bb-1 and Bb-3, were chosen for further analysis. Monospecific immunoglobulins isolated from the screening sera using nitrocellulose-bound fusion proteins were employed to determine the native molecular weight and the intracellular location of the babesial proteins encoded by the recombinants. Clone Bb-1 encodes an antigen of 77,000 Da located at the apical end of the intraerythrocytic parasite. A protein of 75,000 Da encoded by clone Bb-3 is associated with the infected red blood cell cytoplasm and/or membrane but not with the merozoite.  相似文献   

8.
Many of the genes involved in trichothecene toxin biosynthesis in Fusarium sporotrichioides are present within a gene cluster. Here we report the complete sequence for TRI12, a gene encoding a trichothecene efflux pump that is located within the trichothecene gene cluster of F. sporotrichioides. TRI12 encodes a putative polypeptide of 598 residues with sequence similarities to members of the major facilitator superfamily (MFS) and is predicted to contain 14 transmembrane-spanning segments. Disruption of TRI12 results in both reduced growth on complex media and reduced levels of trichothecene production. Growth of tri12 mutants on trichothecene-containing media is inhibited, suggesting that TRI12 may play a role in F. sporotrichioides self-protection against trichothecenes. Functional analysis of TRI12 was performed by expressing it in yeast strains that were co-transformed with a gene (TRI3) encoding a trichothecene 15-O-acetyltransferase. In the presence of the TRI3 substrate, 15-decalonectrin, cultures of yeast strains carrying TRI12 and TRI3 accumulated much higher levels of the acetylated product, calonectrin, than was observed for strains carrying TRI3 alone. PDR5, a transporter of the ABC superfamily, which is known to mediate trichothecene resistance in yeast, increased calonectrin accumulation in TRI12/TRI3 yeast strains but not in TRI3 strains. These results confirm the involvement of TRI12 in the trichothecene efflux associated with toxin biosynthesis, and demonstrate the usefulness of yeast as a host system for studies of MFS-type transporters.  相似文献   

9.
10.
Summary In tomato, nine independent EMS-induced mutants representing recessive mutations at three different loci (gib-1, gib-2, and gib-3) were isolated. Six of these have an almost absolute gibberellin requirement for seed germination and elongation growth. In addition, the leaves are darker green, smaller, and changed in structure as compared to wild type. The three other mutants, which germinate without GA, are allelic to specific, nongerminating mutants and have less severe mutant characteristics. The respective loci are situated on three different chromosomes. The genes identified by these mutants control steps in gibberellin biosynthesis, as endogenous gibberellins are strongly reduced.  相似文献   

11.
From an Escherichia coli K-12 strain lacking adenylate cyclase (cya) and cyclic AMP receptor protein (crp), two mutants were isolated that synthesize uridine phosphorylase constitutively. The mutations differ from one another and also from a wild type in the maximum rate of uridine phosphorylase synthesis. They have constitutive expression of the uridine phosphorylase gene (udp) in the presence of repressor protein coded by the cytR regulatory gene and decrease the sensitivity of the udp gene simultaneously with catabolite repression. Both mutations cause a high level of udp expression whether they are in a cya crp or in a cya+ crp+ background. Another mutation (udpP1) isolated previously alters the response of udp gene to the ctyR repressor and produces a higher constitutive level of uridine phosphorylase in a cytR+ than in a cytR background when bacteria are grown in glucose. The synthesis of uridine phosphorylase in this mutant is dependent on an intact cyclic AMP-cyclic AMP receptor protein complex. All mutations studied are cis-acting and extremely closely linked to the udp structural gene, and appear to affect the uridine phosphorylase promoter-operator region. The data obtained are in accordance with a suggestion that the cytR repressor protein normally asserts its function by preventing the positive action of cyclic AMP-cyclic AMP receptor protein complex.  相似文献   

12.
13.
14.
赖氨酸脱羧酶(Lysine decarboxylase,LDC)是抗老年痴呆药——石杉碱甲生物合成的第一个酶。为了研究蛇足石杉中LDC的特性和功能,以其总RNA为模板,通过RT-PCR扩增得到2个赖氨酸脱羧酶基因LDC1和LDC2,克隆至pMD?19-T中测序发现,两基因同源性为95.3%,分别编码212和202个氨基酸。将两基因引入pET-32a(+)构建重组表达质粒pET-32a(+)/LDC1和pET-32a(+)/LDC2,分别转入BL21(ED3)中进行诱导表达,在30℃条件下获得可溶性表达产物Trx-LDC1和Trx-LDC2;采用Ni-NTA亲和层析法纯化目的蛋白,建立酶促反应体系分析其脱羧酶活性,薄层层析(TLC)检测表明重组融合蛋白Trx-LDC1和Trx-LDC2均能催化赖氨酸脱羧生成尸胺。利用生物信息学软件分析发现LDC1和LDC2理化性质存在差异,但预测的二级结构和三维结构基本一致。  相似文献   

15.
A 371 bp full-length cDNA (GenBank Accession No. DQ232774) was obtained from housefly Musca domestica by using degenerate primers and subsequent amplification by 5'- and 3'-RACE. The cecropin gene, Mdcec and Mdcec/6His, was cloned into expression pPICZalpha-A vector and was expressed in the methylotrophic yeast, Pichia pastoris. The recombinant Mdcec was purified using cationic exchange chromatography and 1.2mg pure active Mdcec was obtained from 100ml culture broth supernatant. To facilitate purification of Mdcec, the C-terminal 6His-tagged Mdcec was also expressed in P. pastoris. The recombinant Mdcec/6His was purified to homogeneity by a nickel chelating sepharose column and 2.0mg pure active Mdcec/6His was obtained from 100ml culture broth supernatant. Anti-microbial assays demonstrated that Mdcec had broad spectrum of antimicrobial property against fungi, as well as Gram-positive and Gram-negative bacteria. Mdcec/6His showed a similar activity to Mdcec against bacteria, but a slight higher activity against fungi. These results indicate that the 6His-tag can enhance the cationic nature and stability of Mdcec. This is the first report on the heterologous expression of a cecropin and cecropin with a 6His tag in P. pastoris. Our results suggest that the P. pastoris expression system can be used to produce large quantities of fully functional M. domestica cecropin for both research and industrial purpose.  相似文献   

16.
17.
A series of mutants of simian virus 40 has been constructed with deletions in the coding sequence for large T antigen. Nucleotide sequence analysis indicates that 4 mutants have in-phase and 11 have out-of-phase deletions. Mutant DNAs were assayed for the following activities: the ability to form plaques, the ability to produce T antigen as scored by indirect immunofluorescence, viral DNA replication, and morphological transformation of rat cells. Two viable mutants were found, and these had deletions confined to the carboxyl terminus of T antigen. Only those mutants coding for polypeptides greater than 40% of the length of wildtype T antigen produced detectable nuclear fluorescence. The two viable mutants with deletions in the carboxyl terminus of the protein retained the ability both to replicate their DNA, although at a reduced level, and to transform nonpermissive cells. Mutants with sequence changes that result in the loss of more than 117 amino acids from the carboxyl terminus were not viable and were also defective in the DNA replication and transformation functions of T antigen, although several produced detectable nuclear fluorescence. These functions were also sensitive to the removal of amino acids near the amino terminus and in the middle of the protein.  相似文献   

18.
Toxoplasma gondii, strain RH, produced plaques in human fibroblast tissue cultures over the temperatures 30–41 C. Muta?enesis with N-methyl-N′-nitro-N-nitrosoguanidine yielded seven temperature-sensitive mutants that had lost the ability to form plaques at 40 C but still grew well at 33 C. No spontaneous mutants were detected. The temperature-sensitive mutants were not markedly thermolabile and adsorbed normally to tissue culture cells at 40 C. Three mutants differed from one another in their temperatures for optimal growth, and in their ability to remain infectious within cells incubated at 40 C. Both mutants that were tested were found to be markedly less virulent for mice than was the wild type RH strain.  相似文献   

19.
Mutants of Escherichia coli have been isolated which are resistant to beta-aspartyl hydroxamate, a lethal substrate of asparaginase II in fungi and a substrate for asparaginase II in E. coli. Among the many phenotypic classes observed, a single mutant (designated GU16) was found with multiple defects affecting asparaginases I and II and aspartase. Other asparaginase II-deficient mutants have also been derived from an asparaginase I-deficient mutant. The mutant strain, GU16, was unable to utilize asparagine and grew poorly on aspartate as the sole source of carbon; transformation of this strain with an E. coli recombinant plasmid library resulted in a large recombinant plasmid which complemented both these defects. Two subclones were isolated, designated pDK1 and pDK2; the former complemented the partial defect in the utilization of aspartate, although its exact function was not established. pDK2 encoded the asparaginase I gene (ansA), the coding region of which was further defined within a 1.7-kilobase fragment. The ansA gene specified a polypeptide, identified in maxicells, with a molecular weight of 43,000. Strains carrying recombinant plasmids encoding the ansA gene overproduced asparaginase I approximately 130-fold, suggesting that the ansA gene might normally be under negative regulation. Extracts from strains overproducing asparaginase I were electrophoresed, blotted, and probed with asparaginase II-specific antisera; no cross-reaction of the antisera with asparaginase I was observed, indicating that asparaginases I and II are not appreciably related immunologically. When a DNA fragment containing the ansA gene was used to probe Southern blots of restriction endonuclease-digested E. coli chromosomal DNA, no homologous sequences were revealed other than the expected ansA-containing fragments. Therefore, the genes encoding asparaginases I and II are highly sequence related.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号