首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developmental changes in ganglioside composition and biosynthesis was studied in rat brain between embryonic day (E) 14 and birth. In E14 brains, GM3 and GD3 were predominant. At E16, "b" series gangliosides, such as GD1b, GT1b, and GQ1b, increased in content. After E18, "a" series gangliosides such as GM1, GD1a, and GT1a increased in content, and the content of GM3 and GD3 markedly decreased. Because of these changes in composition, we determined the activities, in homogenates of embryonic brains, of two key enzymes of ganglioside synthesis: sialyltransferase for the synthesis of GD3 from GM3 and N-acetylgalactosaminyltransferase for GM2 synthesis from GM3. The sialyltransferase activity (GM3----GD3) was constant between E14 and E18 but decreased rapidly from E18 to birth. In contrast, the N-acetylgalactosaminyltransferase activity (GM3----GM2) increased between E14 and E18 but was constant from E18 to birth. These changes in ganglioside composition and enzymatic activities indicate that during development there is a shift from synthesis of the simplest gangliosides of the "a" and "b" pathways to synthesis of the more complex gangliosides.  相似文献   

2.
Glycosphingolipids (GSLs), present in cell membranes, participate in a variety of biological functions. Although their exact role(s) may not be understood, it has been shown that 1) embryos lacking glucosylceramide synthase activity do not develop normally, 2) GSLs can affect neuritogenesis, and 3) they can function as receptors for some pathogens. To study the role of the saccharide portion of a GSL in any of these functions, it is necessary to either isolate it from the intact GSL or synthesize it. Because syntheses are more complex, modifications were made to the oxidation/elimination procedure previously described for the isolation of the saccharide portion of GM1 and GD1a to enable it to be used with GSLs of varying polarity. The key is to use a mixture of GSLs that differ in polarity. This appears to eliminate problems encountered when purified GSLs such as sulfatide or GT1b are used.  相似文献   

3.
Expression of gangliosides in the liver was examined in primary cultures of hepatocytes from adult rats and liver tissues from rats of different ages. Hepatocytes were isolated from 7-week-old rat liver and cultured in L-15 medium containing insulin, dexamethasone and 10% fetal bovine serum. Hepatocytes proliferated only on the first day, and then ceased proliferation. The content of GD3 and GD1a increased during the period of active proliferation and reached a nearly constant level, whereas GM1, GD1b, GT1b, and GQ1b gradually increased throughout culture. Addition of EGF to the culture medium caused significant increases in the content of GD3, and to a lesser degree of GM3, but exhibited little effect on the expression of other ganglioside species. The specific induction of GD3 and GM3 expression by EGF was reproduced under serum-free conditions, despite the lack of hepatocyte proliferation. Expression of gangliosides in cultured hepatocytes was also modulated by cell density; higher cell density brought about increased content of GM1, GD1a, GD1b, GT1b, and GQ1b with concomitant reduction of GM3 in cells. The composition of gangliosides in liver tissues demonstrated a unique developmental pattern. GD3 and GD1a were strongly expressed in E-16 embryonic tissue and rapidly decreased with increasing age. GD1b, GT1b, and GQ1b were found only in postnatal liver tissues. These findings suggest that the expression of gangliosides in rat hepatocytes and liver tissues are regulated by growth- and development-dependent factors.  相似文献   

4.
A novel thin-layer chromatographic procedure has been developed that permits rapid, high-resolution separation of complex ganglioside mixtures and direct densitometric quantification. A special advantage of the new procedure, performed by two different consecutive runs on high-performance thin-layer chromatography plates, is an excellent separation of multisialogangliosides containing more than three sialic acid residues. Using the new procedure, 10 unidentified fractions were detected in embryonic chick brains. These gangliosides were clearly distinguishable from the known gangliosides, GM1, GD3, GD1a, GD2, GD1b, GT1b, and GQ1b. Eight of these “additional” fractions were also found in the brains of rays. From published data on the cod fish brain, 6 of the novel fractions are suggested to correspond to GT3, GT2, GT1c, GQ1c, GP1c, and GP1b. Four fractions, moving on thin-layer chromatography plates below the suggested GP1c have not been reported previously in any vertebrate. Due to their very slow migration rates they may contain gangliosides with six, seven, or more sialic acid residues. During development of the chicken, the relative amounts of the newly detected fractions decrease in favor of GT1b and GD1a.  相似文献   

5.
Our study deals with the interaction of CD33 related-siglecs-5,-7,-8,-9,-10 with gangliosides GT1b, GQ1b, GD3, GM2, GM3 and GD1a. Siglec-5 bound preferentially to GQ1b, but weakly to GT1b, whereas siglec-10 interacted only with GT1b ganglioside. Siglec-7 and siglec-9 displayed binding to gangliosides GD3, GQ1b and GT1b bearing a disialoside motif, though siglec-7 was more potent; besides, siglec-9 interacted also with GM3. Siglec-8 demonstrated low affinity to the gangliosides tested compared with other siglecs. Despite high structural similarity of CD33 related siglecs, they demonstrated different ganglioside selectivity, in particular to the Neu5Acalpha2-8Neu5Ac motif.  相似文献   

6.
The thermotropic behavior of mixtures of dipalmitoylphosphatidylcholine (DPPC) with natural glycosphingolipids (galactosylceramide, phrenosine, kerasine, glucosylceramide, lactosylceramide, asialo-GM1, sulfatide, GM3, GM1, GD1a, GT1b) in dilute aqueous dispersions were studied by high sensitivity differential scanning calorimetry over the entire composition range. The pretransition of DPPC is abolished and the cooperativity of the main transition decreases sharply at mole fractions of glycosphingolipids below 0.2. All systems exhibit non-ideal temperature-composition phase diagrams. The mono- and di-hexosylceramides are easily miscible with DPPC when the proportion of glycosphingolipids in the system is high. A limited quantity (1-6 molecules of DPPC per molecule of glycosphingolipid (GSL) can be incorporated into a homogeneously mixed lipid phase. Domains of DPPC, immiscible with the rest of a mixed GSL-DPPC phase that shows no cooperative phase transition, are established as DPPC exceeds a certain proportion in the system. One negative charge (sulfatide) or four neutral carbohydrate residues (asialo-GM1) in the oligosaccharide chain of the glycosphingolipids results in phase diagrams exhibiting coexistence of gel and liquid phases over a broad temperature-composition range. Systems containing gangliosides show complex phase diagrams, with more than one phase transition. However, no evidence for phase-separated domains of pure ganglioside species is found. The thermotropic behavior of systems containing DPPC and glycosphingolipids correlates well with their interactions in mixed monolayers at the air/water interface.  相似文献   

7.
Abstract: To characterize the sialyltransferase-IV activity in brain tissues, the activities of GM1b-, GD1a-, GT1b-, and GQ1c-synthases in adult cichlid fish and rat brains were examined using GA1, GM1, GD1b, or a cod brain ganglioside mixture as the substrate. The GD1a-synthase activity in the total membrane fraction from cichlid fish brain required divalent cations such as Mg2+ or Mn2+ and Triton CF-54 for its full activity. The Vmax value was 1,340 pmol/mg of protein/h at an optimal pH of 6.5, whereas the apparent Km values for CMP-sialic acid and GM1 were 172 and 78 µM, respectively. Cichlid fish and rat brains also contained GM1b-, GT1b-, and GQ1c-synthase activities. The ratio of GM1b-, GD1a-, and GT1b-synthase activities in fish brain was 1.00:0.89:1.13, respectively, and in rat brain 1.00:0.60:0.63. Incubation of fish brain membranes with a cod brain ganglioside mixture, which contains GT1c, and [3H]CMP-sialic acid produced radiolabeled GQ1c. It is interesting that the adult rat brain also contains an appreciable level of GQ1c-synthase activity despite its very low concentrations of c-series gangliosides. The GD1a- or GQ1c-synthase activity in fish and rat brain was inhibited specifically by coincubation with the glycolipids that serve as the substrates for other sialyltransferase-IV reactions. Thus, the GD1a-synthase activity was inhibited by GA1 and GD1b, but not by LacCer, GM3, or GD3. In a similar manner, the synthesis of GQ1c was suppressed by GA1, GM1, and GD1b, but not by LacCer, GM3, or GD3. The GD1a-synthase activity directed toward endogenous GM1 was inhibited by GA1 or GT1b, whereas the endogenous GT1b-synthase activity was suppressed by GA1 or GM1. GA1, GM1, and GD1b did not affect the endogenous GM3- and GD3-synthase activities. These results clearly demonstrate that sialyltransferase-IV in brain tissues catalyzes the reaction for GQ1c synthesis in the c-pathway as well as the corresponding steps in the asialo-, a-, and b-pathway in ganglioside biosynthesis.  相似文献   

8.
Adults rats with hypothyroidism were prepared by administration of 6-propyl-2-thiouracil (PTU) or methimazole, and the tissues were examined for their gangliosides through methods including glycolipid-overlay techniques. Normal thyroid tissue contained GM3, GD3, and GD1a as the major gangliosides, with GM1, GD1b, GT1b, and GQ1b in lesser amounts. The goitrous tissue of PTU-induced hypothyroid rats had higher concentrations of GM1 and GD1a with a concomitant decrease of GM3. The amount of GT3 in thyroid tissue was increased in hypothyroid animals. While normal liver tissue had a complex ganglioside pattern with a- and b-series gangliosides, the PTU-induced hypothyroid tissue showed a simpler ganglioside profile that consisted mainly of a-series gangliosides with almost undetectable amounts of b-series gangliosides. The expression of c-series gangliosides was suppressed in the hypothyroid liver tissue. Heart tissue had higher contents of GM3 and GT3 than control. No apparent change was observed in the compositions of major and c-series gangliosides in other extraneural tissues (i.e., kidney, lung, spleen, thymus, pancreas, testis, skeletal muscle, and eye lenses), and neural tissues (i.e., cerebrum and cerebellum) from PTU-induced hypothyroid rats. The ganglioside changes of thyroid, liver, and heart tissues were reproduced in corresponding tissues of methimazole-induced hypothyroid rats. These results suggest that hypothyroid conditions affect the biosynthesis and expression of gangliosides in specific tissue and cell types.  相似文献   

9.
Extended glycoconjugate binding specificities of three sialic acid-dependent immunoglobulin-like family member lectins (siglecs), myelin-associated glycoprotein (MAG), Schwann cell myelin protein (SMP), and sialoadhesin, were compared by measuring siglec-mediated cell adhesion to immobilized gangliosides. Synthetic gangliosides bearing the alpha-series determinant (NeuAc alpha2,6-linked to GalNAc on a gangliotetraose core) were tested, including GD1alpha (IV(3)NeuAc, III(6)NeuAc-Gg(4)OseCer), GD1alpha with modified sialic acid residues at the III(6)-position, and the "Chol-1" gangliosides GT1aalpha (IV(3)NeuAc, III(6)NeuAc, II(3)NeuAc-Gg(4)OseCer) and GQ1balpha (IV(3)NeuAc, III(6)NeuAc, II(3)(NeuAc)(2)-Gg(4)OseCer). The alpha-series gangliosides displayed enhanced potency for MAG- and SMP-mediated cell adhesion (GQ1balpha > GT1aalpha, GD1alpha > GT1b, GD1a > GM1 (nonbinding)), whereas sialoadhesin-mediated adhesion was comparable with alpha-series and non-alpha-series gangliosides. GD1alpha derivatives with modified sialic acids (7-, 8-, or 9-deoxy) or sulfate (instead of sialic acid) at the III(6)-position supported adhesion comparable with that of GD1alpha. Notably, a novel GT1aalpha analog with sulfates at two internal sites of sialylation (NeuAcalpha2,3Galbeta1,4GalNAc-6-sulfatebeta1, 4Gal3-sulfatebeta1,4Glcbeta1,1'ceramide) was the most potent siglec-binding structure tested to date (10-fold more potent than GT1aalpha in supporting MAG and SMP binding). Together with prior studies, these data indicate that MAG and SMP display an extended structural specificity with a requirement for a terminal alpha2, 3-linked NeuAc and great enhancement by nearby precisely spaced anionic charges.  相似文献   

10.
11.
Nuclear gangliosides were characterized using two distinct fractions of large (N1) and small (N2) nuclear populations from rat brain. The ganglioside concentration of N1 nuclei from adult rat brain was 0.92 microg sialic acid/mg protein, which was about 3.8 times higher than that of N2 nuclei. N1 and N2 nuclear gangliosides showed similar compositional profiles; they contained major gangliosides of GM1, GD1a, GD1b, and GT1b, with GM3 in lesser amounts. c-Series gangliosides such as GT3, GQ1c, and GP1c were also detected in both nuclear preparations. Nuclear localization of gangliosides was confirmed by immunofluorescence with anti-GM1 antibody, cholera toxin B subunit, and c-series ganglioside-specific monoclonal antibody A2B5. Developmental changes of nuclear gangliosides were examined using rats of different ages ranging from embryonic day 14 (E14) to postnatal 7 weeks. The concentration of N1 nuclear gangliosides changed only slightly during development and did not correlate with that of whole-brain gangliosides. The developmental pattern of ganglioside composition of N1 nuclei was also distinguished from that of microsomal membranes; the ganglioside changes in N1 nuclei included reduced expression of di- and polysialogangliosides at E16 and higher proportions of GM3 at early and late stages of the period. These findings suggest that gangliosides in nuclear membranes are developmentally regulated in a distinct manner in brain cells.  相似文献   

12.
Modulation of Ganglioside Biosynthesis in Primary Cultured Neurons   总被引:11,自引:4,他引:7  
Murine cerebellar cells were pulse labeled with [14C]galactose, and the incorporation of radioactivity into gangliosides and neutral glycosphingolipids was examined under different experimental conditions. In the presence of drugs affecting intracellular membrane flow, as well as at 15 degrees C, labeled GlcCer was found to accumulate in the cells, whereas the labeling of higher glycosphingolipids and gangliosides was reduced. Monensin and modulators of the cytoskeleton effectively blocked biosynthesis of the complex gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, whereas incorporation of radioactivity into neutral glycosphingolipids, such as glucosylceramide and lactosylceramide, as well as GM3, GM2, and GD3 was either increased or unaltered. As monensin has been reported to interfere with the flow of molecules from the cis to the trans stacks of the Golgi apparatus, this result highlights at least one subcompartmentalization of ganglioside biosynthesis within the Golgi system. Inhibitors of energy metabolism affected, predominantly, the biosynthesis of the b-series gangliosides, whereas a reduced temperature (15 degrees C) more effectively blocked incorporation of radiolabel into the a-series gangliosides, a result suggesting the importance of GM3, as the principal branching point, for the regulation of ganglioside biosynthesis.  相似文献   

13.
Liver ganglioside patterns of eight rat strains were classified according to two phenotypes: SHR type, characterized by predominance of b-series gangliosides (GD1b, GT1b, GQ1b), and DA type, characterized by predominance of a-series gangliosides (GM1, GD1a). Comparison of ganglioside pattern expressed in the liver of F1 hybrids and backcross F2 hybrids indicated that SHR type is controlled by a single autosomal-dominant gene which probably determines the expression of sialytransferase 2 activity for synthesis of GD3 from GM3.  相似文献   

14.
Since a number of anti-glycosphingolipid (GSL) antibody activities have been demonstrated in patients with various neurological disorders, the presence of common antigens between brain microvascular endothelial cells (BMECs) and the nervous tissues presents a potential mechanism for the penetration of macromolecules from the circulation to the nervous system parenchyma. We first investigated GSL composition of cultured bovine BMECs. Bovine BMECs express GM3(NeuAc) and GM3(NeuGc) as the major gangliosides, and GM1, GD1a, GD1b, GT1b, as well as sialyl paragloboside and sialyl lactosaminylparagloboside as the minor species. Sulfoglucuronosyl paragloboside was also found to be a component of the BMEC acidic GSL fraction, but its concentration was lower in older cultures. On the other hand, the amounts of neutral GSLs were extremely low, consisting primarily of glucosylceramide. In addition, we analyzed the effect of anti-SGPG IgM antibody obtained from a patient of demyelinative polyneuropathy with macroglobulinemia against cultured BMECs. Permeability studies utilizing cocultured BMEC monolayers and rat astrocytes revealed that the antibody facilitated the leakage of [carboxy-14C]-inulin and 125I-labeled human IgM through BMEC monolayers. A direct cytotoxicity of this antibody against BMECs was also shown by a leakage study using [51Cr]-incorporated BMECs. This cytotoxicity depended on the concentration of the IgM antibody, and was almost completely blocked by preincubation with the pure antigen, sulfoglucuronosyl paragloboside. Our present study strongly supports the concept that immunological insults against BMECs induce the destruction or malfunction of the blood-nerve barrier, resulting in the penetration of the immunoglobulin molecule to attach peripheral nerve parenchyma.  相似文献   

15.
We investigated the localization of major gangliosides in adultrat brain by an immunofluorescence technique with mouse monoclonalantibodies (MAbs). Five MAbs (GMB16, GMR17, GGR12, GMR5 andGMR13) that specifically recognize gangliosides GM1, GD1a, GD1b,GT1b and GQ1b, respectively, were used. We have found that thereis a cell type-specific expression of the ganglioside in therat central nervous system. In cerebellar cortex, GM1 was expressedin myelin and some glial cells. GD1a was detected exclusivelyin the molecular layer. GD1b and GQ1b were present restrictedlyon the granular layer; GD1b was detected on the surface of thegranular cell bodies, whereas GQ1b was present in the cerebellarglomerulus. GT1b was distributed intensely in both the molecularlayer and the granular layer. In cerebral cortex, GM1 was detectedin some glial cells. Dense staining was limited to the whitematter. GD1a was distributed in layers I, II/III and Va, andthe upper part of layer VI, whereas GQ1b was localized in layersIV and Vb, and the lower part of layer VI. GD1b was detectedbeneath layer III. GT1b appeared to be distributed throughoutall layers. In other regions, such as hippocampal formationand spinal cord, the expression of the ganglioside was alsohighly localized to a specific cell type and layer. ganglioside monoclonal antibody rat brain  相似文献   

16.
Abstract: We reported previously that stereoisomers of 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), the d - threo and l - threo forms, exerted inhibitory and stimulatory effects on glycosphingolipid (GSL) biosynthesis in B16 melanoma cells, respectively. In the present study, the primary cultured rat neocortical explants were treated with l - or d - threo -PDMP. These isomers exhibited opposite effects on neurite outgrowth: d -PDMP was inhibitory at concentrations ranging from 5 to 20 µ M , whereas l -PDMP was stimulatory over the same concentration range, and the maximal effect was observed at 10–15 µ M . Rat neocortical explants were doubly labeled with [14C]serine and [3H]galactose at 15 µ M l - or d -PDMP. l -PDMP increased the incorporations of both labels into sphinganine, sphingosine, ceramide, sphingomyelin, neutral GSLs, and gangliosides, whereas d -PDMP inhibited the glucosylation of ceramide resulting in a reduction of ganglioside biosynthesis and accumulation of precursors of glucosylceramide, ceramide, and sphingomyelin. To clarify the stimulatory effect of l -PDMP on GSL biosynthesis, serine palmitoyltransferase, sphingosine N -acyltransferase, glucosylceramide synthase, lactosylceramide synthase, GM3 synthase, and GD3 synthase were quantified in cell lysates of explants pretreated with this agent. Serine palmitoyltransferase was fully activated up to 150% of the control. Furthermore, marked increases in the activities of lactosylceramide synthase (200%), GM3 synthase (240%), and GD3 synthase (300%) were observed. These results suggest that the neurotrophic action of l -PDMP may be ascribable to its stimulatory effect on the biosynthesis of GSLs, especially that of gangliosides.  相似文献   

17.
Activities of Five Different Sialyltransferases in Fish and Rat Brains   总被引:2,自引:0,他引:2  
Abstract: To investigate the role of Sialyltransferases in the metabolism of brain gangliosides, we examined activities of five different Sialyltransferases (GM3-, GD3-, GT3-, GD1a-, and GT1a-synthase) using total membrane preparations from cichlid fish and Sprague-Dawley rat brains, and analyzed the relationship between the enzyme activities and the ganglloside compositions. The patterns of sialyltransferase activities in fish and rat brains differed from each other. In fish brain, the GM3-synthase activity was lower than GD3-synthase activity, whereas the opposite relationship was observed in rat brain. The GT3-synthase reaction with fish brain membranes produced radiolabeled GM3, GD3, and a ganglioside that was identified as GT3 based on mobility on TLC using two different solvent systems. No GT3-synthase activity was detected in rat brain. The GD1a-and GT1a-synthase activities in fish brain were higher than those in rat brain. Although GT1a was a single radiolabeled ganglioside in fish GT1a-synthase reaction, this ganglioside could not be detected in rat brain. The ratios of GM3-, GD3-, GT3-, GD1a-, and GT1a-synthase activities in fish and rat brain were 23:31:4:28:14 and 61:21:0:18:0, respectively. Ganglioside analysis showed that fish brain was enriched with c-series gangliosides including GT3 and polysialo-species, whereas a-and b-se-ries gangliosides were major components in rat brain. These results suggest that the species-specific expression of gangliosides in brain tissues may be regulated, at least in part, at the level of sialyltransferase activities.  相似文献   

18.
The property of the dyes, acridine orange and methylene blue, to exhibit metachromatic changes upon binding to negatively charged groups that are within a defined spatial separation was employed to study the lateral and transverse topography of sulfatide and gangliosides GM1 and GD1a mixed with dipalmitoylphosphatidylcholine (DPPC) in unilamellar vesicles. The spectral changes of the dyes in the presence of liposomes containing anionic glycosphingolipids (GSLs) (hypochromism and frequency shift) are typical of polyanionic lattices while minor changes are found for neutral lipids. The metachromatic changes are abolished by the presence of Ca2+ in the external medium. The proportion of anionic GSLs accessible to the dyes on the external surface of the liposomes is greater as the GSLs are more complex (sulfatide less than GM1 less than GD1a) and as its proportion in the mixture decreases. The number of molecules of anionic GSLs that are laterally distributed on the external surface in a position favorable for the formation of dye dimers (at intermolecular distances not exceeding 1 nm) is greater for sulfatide than for ganglioside. This is correlated to the greater intermolecular distances and delocalization in ganglioside-, compared to sulfatide-containing interfaces. The experimental values indicate that the mixture with DPPC of any of the anionic GSLs studied behaves as if it was more enriched in the GSLs compared to the proportions of the whole mixture.  相似文献   

19.
The effect of end-product gangliosides (GD1a, GT1b, GQ1b) on the activities of two key enzymes in ganglioside biosynthesis, namely GM2-synthase and GD3-synthase in rat liver Golgi apparatus, has been investigated in detergent-free as well as in detergent-containing assays. In detergent-free intact Golgi vesicles, phosphatidylglycerol was used as a stimulant. This phospholipid was earlier shown to stimulate the activity of GM2-synthase without disrupting the vesicular intactness; it has, however, no effect on GD3-synthase (Yusuf, H.K.M., Pohlentz, G., Schwarzmann, G. & Sandhoff, K. (1983) Eur. J. Biochem. 134, 47-54). In the presence of this stimulant, all higher gangliosides inhibited the activity of GM2-synthase, the inhibition being more profound with increasing negative charge of the inhibiting gangliosides. These inhibitions are unspecific, but they do not exclude an end-product regulation of ganglioside biosynthesis. In detergent-solubilized Golgi membranes, on the other hand, the inhibition pattern was completely different. Here, ganglioside GD1a was the strongest inhibitor of GM2-synthase, followed by GM1 and GM2, but GT1b also inhibited this enzyme appreciably, in fact more strongly than GM1 or GM2. On the other hand, GQ1b had no effect at all. Conversely, GD3-synthase activity was most strongly inhibited by GQ1b, followed by GT1b, but GD1a also inhibited this enzyme almost as strongly as GT1b. These latter findings indicate that feed-back control of the a- and the b-series pathways of ganglioside biosynthesis is probably not specific, but the pathways appear to be inhibited more preferably by their respective end-products than by any other gangliosides of the same of the other series.  相似文献   

20.
Gangliosides were recently shown to bind to calmodulin (Higashi, H., Omori, A., and Yamagata, T. (1992) J. Biol. Chem. 267, 9831-9838). This prompted us to investigate the effects of gangliosides on the calmodulin-dependent enzyme, cyclic nucleotide phosphodiesterase. Several species of gangliosides competitively inhibited calmodulin-stimulated phosphodiesterase activity, with GD1b, GT1b, and GD1a being noted to do so particularly (group 1). GM1, GQ1b, and GM2 (group 2) were less inhibitory, and GM3, GM3(NeuGc), GalCer, sulfatide, GgOse4Cer, and oligosaccharide portions of inhibitory gangliosides showed no inhibition in accordance with the binding specificity of calmodulin to gangliosides. Trypsin-activated phosphodiesterase was inhibited by gangliosides with similar specificity, indicating interactions of gangliosides with the enzyme. Inhibition, however, was less than that of calmodulin-dependent activity by these compounds and, in both cases, was eliminated by excess calmodulin. In the absence of calmodulin, group 1 gangliosides at lower concentrations activated the intact enzyme but inhibited it over a certain range of increase in concentration. Ganglioside-dependent modulation of calmodulin-dependent phosphodiesterase activity is thus shown to be due to interactions of gangliosides with both calmodulin and the enzyme, and consequently, ganglioside-calmodulin binding is likely the mechanism for regulation of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号