首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a novel transgenic mouse model of spontaneous mammary carcinoma, we show here that the IL-12/pulse IL-2 combination can induce rapid and complete regression of well-established autochthonous tumor in a setting where the host immune system has been conditioned by the full dynamic process of neoplastic progression and tumorigenesis. Further, this regimen inhibits neovascularization of established mammary tumors, and does so in conjunction with potent local induction of genes encoding the IFN-gamma- and TNF-alpha-inducible antiangiogenic chemokines IFN-inducible protein 10 and monokine induced by IFN-gamma. In contrast to untreated juvenile C3(1)TAg mice in which histologically normal mammary epithelium predictably undergoes progressive hyperplasia, atypical changes, and ultimately transition to overt carcinoma, the current studies also demonstrate a unique preventative therapeutic role for IL-12/pulse IL-2. In juvenile mice, early administration of IL-12/pulse IL-2 markedly limits the expected genetically programmed neoplastic transition within the mammary epithelium and does so in conjunction with enhancement of constitutive Fas and pronounced induction of local Fas ligand gene expression, T cell infiltration, and induction of apoptosis within the mammary epithelium. These events occur in the absence of a durable Ag-specific memory response. Thus, this novel model system demonstrates that the potent therapeutic activity of the IL-12/pulse IL-2 combination rapidly engages potent apoptotic and antiangiogenic mechanisms that remain active during the delivery of IL-12/pulse IL-2. The results also demonstrate that these mechanisms are active against established tumor as well as developing preneoplastic lesions.  相似文献   

2.
Angiogenesis, i.e. formation of new blood vessels out of pre-existing capillaries, is essential to the development of tumour vasculature. The discovery of specific antiangiogenic inhibitors has important therapeutic implications for the development of novel cancer treatments. Vasostatin, the N-terminal domain of calreticulin, is a potent endogenous inhibitor of angiogenesis and tumour growth. In our study, using B16(F10) murine melanoma model and electroporation we attempted intramuscular transfer of human vasostatin gene. The gene therapy was combined with antiangiogenic drug dosing schedule of a known chemotherapeutic (cyclophosphamide). The combination of vasostatin gene therapy and cyclophosphamide administration improved therapeutic effects in melanoma tumours. We observed both significant inhibition of tumour growth and extended survival of treated mice. To our knowledge, this is one of the first reports showing antitumour efficacy of electroporation-mediated vasostatin gene therapy combined with antiangiogenic chemotherapy.  相似文献   

3.
We present a novel immunotherapeutic strategy using a human B7-DC cross-linking Ab that prevents lung inflammation, airway obstruction, and hyperreactivity to allergen in a mouse model of allergic inflammatory airway disease. Dendritic cells (DC) have the ability to skew the immune response toward a Th1 or Th2 polarity. The sHIgM12 Ab functions in vitro by cross-linking the costimulatory family molecule B7-DC (PD-L2) on DC up-regulating IL-12 production, homing to lymph nodes, and T cell-activating potential of these APCs. Using chicken OVA as a model Ag, the administration of sHIgM12 Ab to BALB/c mice blocked lung inflammation, airway pathology, and responsiveness to methacholine, even after animals were presensitized and a Th2-polarized immune response was established. This therapeutic strategy was ineffective in STAT4-deficient animals, indicating that IL-12 production is critical in this system. Moreover, the polarity of the immune response upon in vitro restimulation with Ag is changed in wild-type mice, with a resulting decrease in Th2 cytokines IL-4 and IL-5 and an increase in the immunoregulatory cytokine IL-10. These studies demonstrate that the immune response of hypersensitized responders can be modulated using B7-DC cross-linking Abs, preventing allergic airway disease upon re-exposure to allergen.  相似文献   

4.
The human melanoma differentiation associated gene-7 (mda-7), also known as interleukin-24 (IL-24), is a novel gene with tumor suppressor, antiangiogenic, and cytokine properties. In vitro adenovirus-mediated gene transfer of the human mda-7/IL-24 gene (Ad-mda-7) results in ubiquitous growth suppression of human cancer cells with minimal toxicity to normal cells. Intratumoral administration of Ad-mda-7 to lung tumor xenografts results in growth suppression via induction of apoptosis and antiangiogenic mechanisms. Although these results are encouraging, one limitation of this approach is that its locoregional clinical application-systemic delivery of adenoviruses for treatment of disseminated cancer is not feasible at the present time. An alternative approach that is suitable for systemic application is non-viral gene delivery. We recently demonstrated that DOTAP:cholesterol (DOTAP:Chol) nanoparticles effectively deliver tumor suppressor genes to primary and disseminated lung tumors. In the present study, therefore, we evaluated nanoparticle-mediated delivery of the human mda-7/IL-24 gene to primary and disseminated lung tumors in vivo. We demonstrate that DOTAP:Chol efficiently delivers the mda-7/IL-24 gene to human lung tumor xenografts, resulting in suppression of tumor growth. Growth-inhibitory effects were observed in both primary (P=0.001) and metastatic lung tumors (P=0.02). Furthermore, tumor vascularization was reduced in mda-7/IL-24-treated tumors. Finally, growth was also inhibited in murine syngenic tumors treated with DOTAP:Chol-mda-7 nanoparticles (P=0.01). This is the first report demonstrating (1) systemic therapeutic effects of mda-7/IL-24 in lung cancer, and (2) antitumor effects of human mda-7 in syngeneic cancer models. Our findings are important for the development of mda-7/IL-24 treatments for primary and disseminated cancers.  相似文献   

5.
We investigated suppression of murine B16(F10) melanoma tumor growth following a therapy which involved concomitant administration of cyclophosphamide and plasmid DNA bearing interleukin-12 gene. Since both therapeutic factors display antiangiogenic capabilities, we assumed that their use in blocking the formation of new blood vessels would result in augmented inhibition of tumor growth. This combined therapy regimen indeed resulted in a considerable suppression of tumor growth. We observed a statistically significant extension of treated animals' lifespan. Interestingly, the therapeutic effect was also obtained using a plasmid without an interleukin gene insert. This observation suggests that plasmid DNA, which has been widely applied for treating neoplastic tumors, contains element(s) that elicit immune response in mice.  相似文献   

6.
We engineered a fusion protein, mrIL-12vp [mouse recombinant interleukin (IL)-12 linked to vascular peptide], linking the vascular homing peptide CDCRGDCFC (RGD-4C), a ligand for alphavbeta3 integrin, to mrIL-12 to target IL-12 directly to tumor neovasculature. The fusion protein stimulated IFN-gamma production in vitro and in vivo, indicating its biological activity was consistent with mrIL-12. Immunofluorescence techniques showed mrIL-12vp specifically bound to alphavbeta3 integrin-positive cells but not to alphavbeta3 integrin-negative cells. In corneal angiogenesis assays using BALB/c mice treated with either 0.5 microg/mouse/d of mrIL-12vp or mrIL-12 delivered by subcutaneous continuous infusion, mrIL-12vp inhibited corneal neovascularization by 67% compared with only a slight reduction (13%) in angiogenesis in the mrIL-12-treated animals (P = 0.008). IL-12 receptor knockout mice given mrIL-12vp showed a marked decrease in the area of corneal neovascularization compared with mice treated with mrIL-12. These results indicate that mrIL-12vp inhibits angiogenesis through IL-12-dependent and IL-12-independent mechanisms, and its augmented antiangiogenic activity may be due to suppression of endothelial cell signaling pathways by the RGD-4C portion of the fusion protein. Mice injected with NXS2 neuroblastoma cells and treated with mrIL-12vp showed significant suppression of tumor growth compared with mice treated with mrIL-12 (P = 0.03). Mice did not show signs of IL-12 toxicity when treated with mrIL-12vp, although hepatic necrosis was present in mrIL-12-treated mice. Localization of IL-12 to neovasculature significantly enhances the antiangiogenic effect, augments antitumor activity, and decreases toxicity of IL-12, offering a promising strategy for expanding development of IL-12 for treatment of cancer patients.  相似文献   

7.
8.
In the present work, we used a novel albumin-associated lipoplex formulation, containing the cationic lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (EPOPC) and cholesterol (Chol), to evaluate the antitumoral efficacy of two gene therapy strategies: immuno-gene therapy, mediated by IL-12 gene expression, and "suicide" gene therapy, mediated by HSV-tk gene expression followed by ganciclovir (GCV) treatment. Our data show that, in an animal model bearing a subcutaneous TSA (mouse mammary adenocarcinoma) tumor, intratumoral administration of the albumin-associated complexes containing the plasmid encoding IL-12 results in a strong antitumoral effect, as demonstrated by the smaller tumor size, the higher T-lymphocyte tumor infiltration and the more extensive tumor necrotic and hemorrhagic areas, as compared to that observed in animals treated with control complexes. On the other hand, the application of the "suicide" gene therapy strategy results in a significant antitumoral activity, which is similar to that achieved with the immuno-gene therapy strategy, although involving different antineoplastic mechanisms. For the tested model, albumin-associated complexes were shown to efficiently mediate intratumoral delivery of therapeutic genes, thus leading to a significant antitumoral effect. This finding is particularly relevant since TSA tumors are characterized for being poorly immunogenic, aggressive and exhibiting high proliferation capacity.  相似文献   

9.

Background  

Interleukin-12 (IL-12) is well characterized to induce cellular antitumoral immunity by activation of NK-cells and T-lymphocytes. However, systemic administration of recombinant human IL-12 resulted in severe toxicity without perceptible therapeutic benefit. Even though intratumoral expression of IL-12 leads to tumor regression and long-term survival in a variety of animal models, clinical trials have not yet shown a significant therapeutic benefit. One major obstacle in the treatment with IL-12 is to overcome the relatively low expression of the therapeutic gene without compromising the safety of such an approach. Our objective was to generate an adenoviral vector system enabling the regulated expression of very high levels of bioactive, human IL-12.  相似文献   

10.
Antiangiogenic and antitumor activities of IL-27   总被引:10,自引:0,他引:10  
IL-27 is a novel IL-6/IL-12 family cytokine playing an important role in the early regulation of Th1 responses. We have recently demonstrated that IL-27 has potent antitumor activity, which is mainly mediated through CD8(+) T cells, against highly immunogenic murine colon carcinoma. In this study, we further evaluated the antitumor and antiangiogenic activities of IL-27, using poorly immunogenic murine melanoma B16F10 tumors, which were engineered to overexpress single-chain IL-27 (B16F10 + IL-27). B16F10 + IL-27 cells exerted antitumor activity against not only s.c. tumor but also experimental pulmonary metastasis. Similar antitumor and antimetastatic activities of IL-27 were also observed in IFN-gamma knockout mice. In NOD-SCID mice, these activities were decreased, but were still fairly well-retained, suggesting that different mechanisms other than the immune response are also involved in the exertion of these activities. Immunohistochemical analyses with Abs against vascular endothelial growth factor and CD31 revealed that B16F10 + IL-27 cells markedly suppressed tumor-induced neovascularization in lung metastases. Moreover, B16F10 + IL-27 cells clearly inhibited angiogenesis by dorsal air sac method, and IL-27 exhibited dose-dependent inhibition of angiogenesis on chick embryo chorioallantoic membrane. IL-27 was revealed to directly act on HUVECs and induce production of the antiangiogenic chemokines, IFN-gamma-inducible protein (IP-10) and monokine induced by IFN-gamma. Finally, augmented mRNA expression of IP-10 and monokine induced by IFN-gamma was detected at the s.c. B16F10 + IL-27 tumor site, and antitumor activity of IL-27 was partially inhibited by the administration of anti-IP-10. These results suggest that IL-27 possesses potent antiangiogenic activity, which plays an important role in its antitumor and antimetastatic activities.  相似文献   

11.
In the present work, we used a novel albumin-associated lipoplex formulation, containing the cationic lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (EPOPC) and cholesterol (Chol), to evaluate the antitumoral efficacy of two gene therapy strategies: immuno-gene therapy, mediated by IL-12 gene expression, and “suicide” gene therapy, mediated by HSV-tk gene expression followed by ganciclovir (GCV) treatment. Our data show that, in an animal model bearing a subcutaneous TSA (mouse mammary adenocarcinoma) tumor, intratumoral administration of the albumin-associated complexes containing the plasmid encoding IL-12 results in a strong antitumoral effect, as demonstrated by the smaller tumor size, the higher T-lymphocyte tumor infiltration and the more extensive tumor necrotic and hemorrhagic areas, as compared to that observed in animals treated with control complexes. On the other hand, the application of the “suicide” gene therapy strategy results in a significant antitumoral activity, which is similar to that achieved with the immuno-gene therapy strategy, although involving different antineoplastic mechanisms. For the tested model, albumin-associated complexes were shown to efficiently mediate intratumoral delivery of therapeutic genes, thus leading to a significant antitumoral effect. This finding is particularly relevant since TSA tumors are characterized for being poorly immunogenic, aggressive and exhibiting high proliferation capacity.  相似文献   

12.
Interleukin-12 (IL-12) has been evaluated in both preclinical and clinical immunotherapy protocols as a potential therapy for melanoma. However, delivery of IL-12 in the form of recombinant protein can result in severe toxicity, and gene therapy has had limited success against B16.F10 murine melanoma. This study investigated the therapeutic effect of delivering a plasmid encoding IL-12 followed by electroporation on primary and secondary tumors. Three treatments of intratumoral (i.t.) plasmid injection and electroporation resulted in 80% of mice with B16.F10 melanoma tumors being tumor free for >100 days (cure). The "cured animals" were resistant to challenge with B16 cells. In a separate experiment, B16 cells were injected on the opposite flank of the treated tumor on the day of treatment. Eighty-seven percent of control mice developed a distant tumor while only 43.8% of mice receiving two or three i.t. electroporation treatments developed a distant tumor. For examination of tumor development in the lungs, mice were injected intravenously with B16.F10 cells then treated with i.m. injections of plasmid with or without electroporation. Only 37.5% of mice receiving i.m. injections and electroporation developed nodules in the lungs compared to 87.5% of mice in the no-treatment group. The results show that administration of a plasmid encoding IL-12 with electroporation has a therapeutic effect on primary tumors as well as distant tumors and metastases.  相似文献   

13.
The IFN-gamma-inducible proteins monokine induced by IFN-gamma (Mig) and chemokine responsive to gamma-2 (Crg-2) can contribute to IL-12-induced antiangiogenic and leukocyte-recruiting activities, but the extent to which leukocytes vs parenchymal cells in different organs contribute to the production of these molecules remains unclear. The results presented herein show that IFN-gamma-dependent induction of Mig and Crg-2 gene expression can occur in many nonlymphoid organs, and these genes are rapidly induced in purified hepatocytes isolated from mice treated with IL-2 plus IL-12, or from Hepa 1-6 hepatoma cells treated in vitro with IFN-gamma. In addition to depending on IFN-gamma, the ability of IL-12 or IL-2/IL-12 to induce Mig and Crg-2 gene expression in purified hepatocytes also is accompanied by the coordinate up-regulation of the IFN-gamma R alpha and beta-chains, in the absence of IL-12R components. Supernatants of primary hepatocytes obtained from mice treated in vivo with IL-2/IL-12 or from hepatocytes treated in vitro with IFN-gamma contain increased chemotactic activity for enriched human and mouse CD3(+) T cells, as well as mouse DX5(+) NK cells. The hepatocyte-derived chemotactic activity for mouse T cells but not NK cells was ablated by Abs specific for Mig and Crg-2. These results suggest that parenchymal cells in some organs may contribute substantially to initiation and/or amplification of inflammatory or antitumor responses.  相似文献   

14.
新生血管生成是绝大多数肿瘤得以生长和转移的必要前提。所以 ,通过抑制肿瘤血管生成来抑制肿瘤是非常有前途的一种方法 ,有望发展成为一种新型的癌症疗法。主要可以分为两大类 :一是通过抑制促血管生成信号或扩大抑制血管生成因子的作用来干扰肿瘤新生血管的形成过程 ,这领域的广泛研究已经发现了一系列促血管生成因子及其抑制剂和血管生成抑制因子 ;二是利用肿瘤血管与正常血管的差别来携带杀伤性药物直接特异性破坏已形成的肿瘤血管 ;另外 ,内皮细胞及其前体细胞制成疫苗也可起到直接杀伤作用。到目前为止 ,虽然很多抑制肿瘤血管的药物已经被用于临床试验 ,但结果往往不尽如人意 ,从长远来看 ,需要更有效的治疗方法。包括抗血管基因治疗策略 ,靶向药物导入系统的研究 ,以及抗血管生成药物和免疫疗法、化疗和放射治疗的联合应用都在探讨中。随着肿瘤模型评估系统的发展 ,抗血管治疗肿瘤的方法在不久的将来一定会广泛进入临床应用。  相似文献   

15.
16.
Cytokine-encoding viral vectors are considered to be promising in cancer gene immunotherapy. Interleukin 12 (IL-12) has been used widely for anti-tumor treatment, but the administration route and tumor characteristics strongly influence therapeutic efficiency. Meth-A fibrosarcoma has been demonstrated to be insensitive to IL-12 treatment via systemic administration. In the present study, we developed an IL-12-encoding fiber-mutant adenoviral vector (AdRGD-IL-12) that showed enhanced gene transfection efficiency in Meth-A tumor cells, and the production of IL-12 p70 in the culture supernatant from transfected cells was confirmed by ELISA. In therapeutic experiments, a single low-dose (2 x 10(7) plaque-forming units) intratumoral injection of AdRGD-IL-12 elicited pronounced anti-tumor activity and notably prolonged the survival of Meth-A fibrosarcoma-bearing mice. Immunohistochemical staining revealed that the IL-12 vector induced the accumulation of T cells in tumor tissue. Furthermore, intratumoral administration of the vector induced an anti-metastasis effect as well as long-term specific immunity against syngeneic tumor challenge.  相似文献   

17.
IL-12 is a heterodimeric cytokine with many actions on innate and cellular immunity that may have antitumor and antimetastatic effects. However, systemic administration of IL-12 can be toxic. Tumor-specific Abs provide a means to selectively target a metastatic/residual nodule and deliver therapeutic quantities of an immunostimulatory molecule like IL-12 with lower systemic levels and ideally, toxicity. We report the construction and characterization of an Ab fusion protein in which single-chain murine IL-12 is fused to an anti-Her2/neu Ab at the amino terminus (mscIL-12.her2.IgG3). The use of single-chain IL-12 in the fusion protein simplifies vector construction, ensures equimolar concentrations of the two IL-12 subunits, and may confer greater stability to the fusion protein. SDS-PAGE analysis shows this 320-kDa protein is secreted and correctly assembled. FACS analysis demonstrates that this fusion protein binds to cells transfected with the Her2/neu Ag, thus retaining Ab specificity; this fusion protein also binds to a cell line and to PHA-activated PBMC that express the IL-12R, thus demonstrating cytokine receptor specificity. T cell proliferation assays and NK cytotoxicity assays demonstrate that this fusion protein exhibits IL-12 bioactivity comparable to recombinant murine IL-12. In vivo studies demonstrate that this fusion protein has antitumor activity. These results are significant and suggest that this IL-12 Ab fusion protein can effectively combine the therapeutic potential of IL-12 with the tumor-targeting ability of the Ab and may provide a viable alternative to systemic administration of IL-12.  相似文献   

18.
19.
20.
As HuGM-CSF and huIL-6 seem to have synergistic and complementary actions, researchers have proposed that fusion proteins incorporating these two cytokines could show increased biological activity, especially in terms of hematopoietic function. Here, we sought to obtain a functional GM-CSF/IL-6 fusion protein and to investigate its biological activities in vitro. A novel construct encoding a fusion protein of huGM-CSF (9-127) and IL-6 (29-184) was generated in the pBV220 expression vector by step-by-step cloning. Amino acids 1-8 of huGM-CSF and amino acids 1-28 of huIL-6 were deleted by PCR. The mutant huGM-CSF (9-127) and huIL-6 (29-184) cDNAs were linked via a linker sequence encoding 15 amino acid residues (G-G-S-G-S)3. Direct sequencing was used to confirm the validity of the desired construct, and the fusion protein was expressed in Escherichia coli host strain BL21 (DE3) in the form of inclusion bodies (IBs). The expression level was more than 25% of the total cell lysate, and a novel purification and refolding strategy was used to isolate the fusion protein product. Inclusion bodies were purified by Q Sepharose H.P. ion exchange in 8 mol/L urea, followed by in situ refolding by Sephacryl S-200. The renatured fusion proteins were obtained at a purity of >95%, and the strategy of refolding on the gel filtration column was found to be efficient, with a relative refolding rate of 80%. This entire refolding and purification procedure could be performed within one day and may prove applicable to large-scale purification and refolding of recombinant proteins from IBs in E. coli. This new method was used to obtain huGM-CSF (9-127)/IL-6 (29-184) fusion protein with high purity and biological activity. MTT assays in TF-1 and B9 cell lines showed that the specific biological activity of huGM-CSF was 1.14+/-0.10 x 10(8) U/mg, and that for huIL-6 was 1.89+/-0.11 x 10(7) U/mg. The fusion protein exhibited enhanced huGM-CSF, but similar huIL-6 biological activities compared with those of either GM-CSF or IL-6 alone. This suggests that our novel huGM-CSF (9-127)/IL-6 (29-184) fusion protein may hold future promise as a therapeutic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号