首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previously, we showed that arsenic trioxide potently inhibited the growth of myeloma cells and head and neck cancer cells. Here, we demonstrate that arsenic trioxide inhibited the proliferation of all the renal cell carcinoma cell lines (ACHN, A498, Caki-2, Cos-7, and Renca) except only one cell line (Caki-1) with IC(50) of about 2.5-10 microM. Arsenic trioxide induced a G(1) or a G(2)-M phase arrest in these cells. When we examined the effects of this drug on A498 cells, arsenic trioxide (2.5 microM) decreased the levels of CDK2, CDK6, cyclin D1, cyclin E, and cyclin A proteins. Although p21 protein was not increased by arsenic trioxide, this drug markedly enhanced the binding of p21 with CDK2. In addition, the activities of CDK2- and CDK6-associated kinase were reduced in association with hypophosphorylation of Rb protein. Arsenic trioxide (10 microM) also induced apoptosis in A498 cells. Apoptotic process of A498 cells was associated with the changes of Bcl-(XL), caspase-9, caspase-3, and caspase-7 proteins as well as mitochondria transmembrane potential (Deltapsi(m)) loss. Taken together, these results demonstrate that arsenic trioxide inhibits the growth of renal cell carcinoma cells via cell cycle arrest or apoptosis.  相似文献   

2.
The phosphatase inhibitor okadaic acid was found to induce cell cycle arrest of human myeloid leukemic cell lines HL-60 and U937 in a concentration- and time-dependent manner. Exposure to low concentrations of okadaic acid (2-8nM) for 24-48 hr caused greater than 70% of cells to arrest at G2/M, with up to 40% of the cells arrested in early mitosis. Cell viability decreased rapidly after 48 hr of treatment, and morphological and DNA structure analysis indicated that this was primarily due to the induction of apoptosis. The cells arrested in mitosis by 8 nM okadaic acid could be highly enriched by density gradient centrifugation and underwent apoptosis when further cultured either with or without okadaic acid, indicating that the effects of okadaic acid were irreversible. In contrast to the effects of low concentrations of okadaic acid, high concentrations (500 nM), inhibited proliferation in less than 3 hr. Remarkably, the majority of cells also entered a mitosis-like state characterized by dissolution of the nuclear membrane and condensation and partial separation of chromosomes. However, these cells had a diploid content of DNA, indicating that the cell cycle arrest occurred at G1/S with premature chromosome condensation (PCC), rather than at G2/M. If cells were first blocked at G1/S with hydroxyurea and then treated with okadaic acid, greater than 90% developed PCC in less than 3 hr without replicating their DNA. Caffeine was not able to induce PCC in these cells, either with or without prior inhibition of DNA synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Effects of rice bran agglutinin (RBA) on human monoblastic leukemia U937 cells were examined in comparison with those of wheat germ agglutinin (WGA) and Viscum album agglutinin (VAA). These lectins inhibit cell growth, and several lines of evidence indicate that the growth inhibition is caused by the induction of apoptosis. We observed that RBA induces chromatin condensation, externalization of membrane phosphatidylserine, and DNA ladder formation, features of apoptosis. DNA ladder formation was inhibited by a general inhibitor against caspases, which are known to play essential roles in apoptosis. Flow cytometric analysis revealed that RBA and WGA cause G2/M phase cell cycle arrest with increased expression of Waf1/p21, while cell cycle arrest was not observed for VAA. These data indicate that RBA induces apoptosis associated with cell cycle arrest in U937 cells, and suggest that the induction mechanism for RBA is similar to that for WGA, but different from that for VAA.  相似文献   

4.
The functional significance of the cyclin-dependent kinase inhibitor (CDKI) p21Cip1/WAF1 in paclitaxel-mediated lethality was examined in p53-null human leukemia cells (U937 and Jurkat). In these cells, paclitaxel exposure failed to induce p21Cip1/Waf1 expression. Nevertheless, stable expression of U937 cells with a p21Cip1/WAF1 antisense construct blocked paclitaxel-induced G2M arrest and significantly, albeit modestly, increased mitochondrial injury, caspase activation, apoptosis, and loss of clonogenic potential. These protective effects were less than those observed in cells exposed to the antimetabolite ara-C. Consistent with these results, enforced expression of p21Cip1/WAF1 in Jurkat cells transfected with a construct driven by a doxycycline-responsive promoter increased the percentage of cells arrested in G2M, but attenuated paclitaxel-mediated mitochondrial injury and apoptosis. Unexpectedly, enforced expression of p21Cip1/WAF1 diminished paclitaxel-mediated inactivation of ERK, and reduced paclitaxel-induced activation of JNK as well as Bcl-2 phosphorylation. Together, these findings suggest that the CDKI p21Cip1/WAF1 modestly but significantly protects p53-null human leukemia cells from paclitaxel-mediated lethality, and raise the possibility that p21Cip1/WAF1-associated perturbations in signal transduction pathways as well as Bcl-2 phosphorylation status may play a role in this phenomenon.  相似文献   

5.
Signal transduction pathway and a new function of TIS21/BTG2/PC3 were investigated in p53 null U937 cells; Expression of TIS21 by 12-O-tetradecanoyl phorbol-13-acetate (TPA) stimulation was mediated by PKC-delta activation, however, was strongly inhibited by cPKC isozymes. When U937 cells were treated with TPA+Go6976, but not TPA+Go6850, the level of TIS21 mRNA was maintained over that of TPA alone. When analyzed by FACS, TPA-induced G2/M arrest was significantly inhibited by Go6850, but not by Go6976, suggesting the involvement of TIS21 and nPKC isozymes. Indeed, PKC-delta was found to be a regulator of the G2/M arrest and TIS21 expression, confirmed by employing rottlerin and dnPKC-delta experiments. In vivo accumulation of TIS21 protein significantly induced cell death through caspase 3 activation, which was supported further by degradations of procaspase 3, full-length PKC-delta, pRB, and p21(WAF1) in TIS21DeltaC expresser. When the cells were synchronized by nocodazole, TIS21 overexpressers inhibited degradations of cyclin A and cyclin B1 in 3 h after release from the synchronization. Furthermore, TIS21 inhibited cyclin B1-Cdc2 binding and its kinase activity in vivo. In summary, TPA-induced TIS21 mRNA expression is mediated by PKC-delta, and TIS21 induces G2/M arrest and cell death by inhibiting cyclin B1-Cdc2 binding and the kinase activity through its binding to Cdc2.  相似文献   

6.
Activation of PKC with 5 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) for 72 h in human U937 myeloid leukemia cells is associated with induction of adherence, followed by monocytic differentiation and G0/G1 cell cycle arrest. In this study, we demonstrate that in addition to these effects about 25% of U937 cells accumulated in an apoptotic subG1 phase after TPA treatment. The appearance of these apoptotic suspension cells was detectable throughout the time course of the culture and was independent of TPA concentrations between 0.5 and 500 nM. Experiments with cells synchronized by centrifugal elutriation revealed dominant susceptibility of G1-phase cells to TPA-mediated apoptosis. While adherent cells expressed differentiation markers including the integrin CD11c, this effect was less pronounced in the TPA-treated suspension fraction. Moreover, previous work has demonstrated cell cycle arrest in differentiating U937 cells. Accordingly, PKC activation by TPA treatment was associated with a significant expression of the cdk/cyclin inhibitor p21WAF/CIP/sdi-1 in the adherent population and subsequent G0/G1 cell cycle arrest. In contrast, suspension cells failed to induce significant levels of p21WAF/CIP/sdi-1 after TPA stimulation. Immunoblotting experiments demonstrated no difference in the expression of the pro-apoptotic factors Bax, Bad, and Bak in either control U937 and TPA-treated adherent or suspension cells, respectively. However, anti-apoptotic factors including Bcl-2, Bcl-xL, and Mcl-1 were significantly induced in the adherent population whereas no induction was detectable in the suspension cells. In this context, incubation with the caspase-3/caspase-7 specific tetrapeptide inhibitor DEVD prior to TPA treatment prevented an accumulation of cells in subG1, respectively, demonstrating an involvement of these caspases. Taken together, these data suggest that PKC activation can relay distinct signaling pathways such as induction of adherence coupled with monocytic differentiation and growth arrest, or induction of caspase-mediated apoptosis coupled with the failure to adhere and to differentiate.  相似文献   

7.
Wang ZX  Jiang CS  Liu L  Wang XH  Jin HJ  Wu Q  Chen Q 《Cell research》2005,15(5):379-386
The present study investigates the molecular details of how arsenic trioxide inhibits preadipocyte differentiation and examines the role of Akt/PKB in regulation of differentiation and apoptosis. Continual exposure of arsenic trioxide, at the clinic achievable dosage that does not induce apoptosis, suppressed 3T3-L1 cell differentiation into fat cells by inhibiting the expression of PPARy and C/EBPα and disrupting the interaction between PPARγ and RXRα, which determines the programming of the adipogenic genes. Interestingly, if we treated the cells for 12 or 24 h and then withdrew arsenic trioxide, the cells were able to differentiate to the comparable levels of untreated cells as assayed by the activity of GAPDH, the biochemical marker of preadipocyte differentiation. Long term treatment blocked the differentiation and the activity of GAPDH could not recover to the comparable levels of untreated cells. Continual exposure of arsenic trioxide caused accumulation in G2/M phase and the accumulation of p21. We found that arsenic trioxide induced the expression and the phosphorylation of Akt/PKB and it inhibited the interaction between Akt/PKB and PPARγ. Akt/PKB inhibitor appears to block the arsenic trioxide suppression of differentiation. Our results suggested that Akt/PKB may play a role in suppression of apoptosis and negatively regulate preadipocyte differentiation.  相似文献   

8.
Previously, we showed that sulforaphane (SFN), a naturally occurring cancer chemopreventive agent, effectively inhibits proliferation of PC-3 human prostate cancer cells by causing caspase-9- and caspase-8-mediated apoptosis. Here, we demonstrate that SFN treatment causes an irreversible arrest in the G(2)/M phase of the cell cycle. Cell cycle arrest induced by SFN was associated with a significant decrease in protein levels of cyclin B1, cell division cycle (Cdc) 25B, and Cdc25C, leading to accumulation of Tyr-15-phosphorylated (inactive) cyclin-dependent kinase 1. The SFN-induced decline in Cdc25C protein level was blocked in the presence of proteasome inhibitor lactacystin, but lactacystin did not confer protection against cell cycle arrest. Interestingly, SFN treatment also resulted in a rapid and sustained phosphorylation of Cdc25C at Ser-216, leading to its translocation from the nucleus to the cytoplasm because of increased binding with 14-3-3beta. Increased Ser-216 phosphorylation of Cdc25C upon treatment with SFN was the result of activation of checkpoint kinase 2 (Chk2), which was associated with Ser-1981 phosphorylation of ataxia telangiectasia-mutated, generation of reactive oxygen species, and Ser-139 phosphorylation of histone H2A.X, a sensitive marker for the presence of DNA double-strand breaks. Transient transfection of PC-3 cells with Chk2-specific small interfering RNA duplexes significantly attenuated SFN-induced G(2)/M arrest. HCT116 human colon cancer-derived Chk2(-/-) cells were significantly more resistant to G(2)/M arrest by SFN compared with the wild type HCT116 cells. These findings indicate that Chk2-mediated phosphorylation of Cdc25C plays a major role in irreversible G(2)/M arrest by SFN. Activation of Chk2 in response to DNA damage is well documented, but the present study is the first published report to link Chk2 activation to cell cycle arrest by an isothiocyanate.  相似文献   

9.
DNA damaging agents such as ultraviolet (UV) induce cell cycle arrest followed by apoptosis in cells where irreparable damage has occurred. Here we show that during early phase G1 arrest which occurs in UV-irradiated human U343 glioblastoma cells, there are (1) decreases in cyclin D1 and cdk4 levels which parallel a loss of S-phase promoting cyclin D1/cdk4 complexes, and (2) increases in p53 and p21 protein levels. We also show that the late phase UV-induced apoptosis of U343 cells occurs after cell cycle re-entry and parallels the reappearance of cyclin D1 and cdk4 and cyclin D1/cdk4 complexes. These findings suggest that cyclin D1 can abrogate UV-induced G1 arrest and that the p53-mediated apoptosis that occurs in these cells is dependent on cyclin D1 levels. We examined these possibilities using U343 cells that ectopically express cyclin D1 and found that indeed cyclin D1 can overcome the cell cycle arrest caused by UV. Moreover, the appearance of p53 protein and the induction of apoptosis in UV-irradiated cells was found to be dependent on the level of ectopically expressed cyclin D1. These findings, therefore, indicate that expression of cyclin D1 following DNA damage is essential for cell cycle re-entry and p53-mediated apoptosis.  相似文献   

10.
Furano-1,2-naphthoquinone (FNQ), prepared from 2-hydroxy-1,4-naphthoquinone and chloroacetaldehyde in an efficient one-pot reaction, exhibits an anti-carcinogenic effect. FNQ exerted anti-proliferative activity with the G(2)/M cell cycle arrest and apoptosis in A549 cells. FNQ-induced G(2)/M arrest was correlated with a marked decrease in the expression levels of cyclin A and cyclin B, and their activating partner cyclin-dependent kinases (Cdk) 1 and 2 with concomitant induction of p53, p21, and p27. FNQ-induced apoptosis was accompanied with Bax up-regulation and the down-regulation of Bcl-2, X-linked inhibitor of apoptosis (XIAP), and survivin, resulting in cytochrome c release and sequential activation of caspase-9 and caspase-3. Western blot analysis revealed that FNQ suppressed EGFR phosphorylation and JAK2, STAT3, and STAT5 activation, but increased in activation of p38 MAPK and c-Jun NH2-terminal kinase (JNK) stress signal. The combined treatment of FNQ with AG1478 (a specific EGFR inhibitor) significantly enhanced the G(2)/M arrest and apoptosis, and also led to up-regulation in Bax, p53, p21, p27, release of mitochondrial cytochrome c, and down-regulation of Bcl-2, XIAP, survivin, cyclin A, cyclin B, Cdk1, and Cdk2 in A549 cells. These findings suggest that FNQ-mediated cytotoxicity of A549 cell related with the G(2)/M cell cycle arrest and apoptosis via inactivation of EGFR-mediated signaling pathway.  相似文献   

11.
To assess the role of 8-oxoguanine glycosylase (OGG1) in the cell defense against radiation injury, the radiation-induced cytotoxicities were compared between the mutant type KG-1 featuring a loss of OGG1 activity due to a homozygous mutation of Arg 229 Gln, and the wild type U937. While the following three obvious toxicities were displayed in KG-1, they were observed only minimally in U937. These were: a dramatic arrest at the G2/M phase indicated by a marked increase in both the number of G2/M cells and the expression of cyclin B1, cdc2, and mitotic phosphoprotein monoclonal-2 (MPM-2)-reactive proteins; a severe apoptosis shown by a marked increase in the number of cells with hypo-diploid DNA and DNA fragmentation; and as a result, a severe inhibition of cell growth and proliferation measured by the MTT test and [(3)H]-thymidine uptake assay. As expected, KG-1 exhibited a significant increase in the 8-hydroxyguanine level in DNA whereas U937 did not. However, the level of irradiation-induced lipid peroxidation was almost the same in both cell lines. All of these symptoms shown by KG-1 were observed in Molt-4 and CEM-CM3, which were also found to feature low OGG1 activity. These findings suggest that OGG1 plays an important role in cell survival from radiation-induced damage and are also indicative of the capability of 8-hydroxyguanine in DNA to induce cellular toxicities.  相似文献   

12.
Arsenic trioxide (As(2)O(3)) is highly effective in the treatment of acute promyelocytic leukemias that express the promyelocytic leukemia-retinoic acid receptor-alpha (PML-RARalpha) fusion protein. However, evidence has accumulated that As(2)O(3) induces apoptosis regardless of PML-RARalpha status. Here we show that, at clinically relevant concentrations, As(2)O(3) causes S and G(2)M phase arrest of both PML-RARalpha-positive and -negative leukemia cell lines, thus inhibiting their growth. Apoptotic cells are generated predominately from the G(2)M fraction. Using several independent methods, we demonstrate that the cells accumulated in the G(2)M peak consist primarily of cells arrested in the early stages of mitosis, prophase, prometaphase and metaphase. In mitotic cells, there was significant activation of caspases, PARP cleavage, and morphological changes characteristic of apoptosis. Unlike microtubule-active drugs that arrest cells in metaphase, arsenic trioxide did not affect the architecture of microtubules. Our data suggest that the antileukemic activities of arsenic may be a result of mitotic arrest which culminates in apoptosis.  相似文献   

13.
Arsenic trioxide (As2O3) is highly effective in the treatment of acute promyelocytic leukemias that express the promyelocytic leukemia-retinoic acid receptor-a (PML-RARa) fusion protein. However, evidence has accumulated that As2O3 induces apoptosis regardless of PML-RARa status. Here we show that, at clinically relevant concentrations, As2O3 causes S and G2M phase arrest of both PML-RARa-positive and -negative leukemia cell lines, thus inhibiting their growth. Apoptotic cells are generated predominately from the G2M fraction. Using several independent methods, we demonstrate that the cells accumulated in the G2M peak consist primarily of cells arrested in the early stages of mitosis, prophase, prometaphase and metaphase. In mitotic cells, there was significant activation of caspases, PARP cleavage, and morphological changes characteristic of apoptosis. Unlike microtubule-active drugs that arrest cells in metaphase, arsenic trioxide did not affect the architecture of microtubules. Our data suggest that the antileukemic activities of arsenic may be a result of mitotic arrest which culminates in apoptosis.

Key Words:

PML nuclear bodies (NB), Phosphorylated histone H3  相似文献   

14.
15.
Cordycepin, an adenosine analog derived from Cordyceps militaris has been shown to exert anti-tumor activity in many ways. However, the mechanisms by which cordycepin contributes to the anti-tumor still obscure. Here our present work showed that cordycepin inhibits cell growth in NB-4 and U937 cells by inducing apoptosis. Further study showed that cordycepin increases the expression of p53 which promotes the release of cytochrome c from mitochondria to the cytosol. The released cytochrome c can then activate caspase-9 and trigger intrinsic apoptosis. Cordycepin also blocks MAPK pathway by inhibiting the phosphorylation of ERK1/2, and thus sensitizes the apoptosis. In addition, our results showed that cordycepin inhibits the expression of cyclin A2, cyclin E, and CDK2, which leads to the accumulation of cells in S-phase. Moreover, our study showed that cordycepin induces DNA damage and causes degradation of Cdc25A, suggesting that cordycepin-induced S-phase arrest involves activation of Chk2-Cdc25A pathway. In conclusion, cordycepin-induced DNA damage initiates cell cycle arrest and apoptosis which leads to the growth inhibition of NB-4 and U937 cells.  相似文献   

16.
Griseofulvin (GF), an oral antifungal agent, has been shown to exert antitumorigenesis effect through G2/M cell cycle arrest in colon cancer cells. But the underlying mechanisms remained obscure. The purpose of this study is to test the cytotoxic effect of GF on HL-60 and HT-29 cells and elucidate its underlying molecular pathways. Dose-dependent and time-course studies by flow cytometry demonstrated that 30 to 60 microM GF significantly induced G2/M arrest and to a less extend, apoptosis, in HL-60 cells. In contrast, only G2/M arrest was observed in HT-29 cells under similar condition. Pretreatment of 30 microM TPCK, a serine protease inhibitor, completely reversed GF-induced G2/M cell cycle arrest and apoptosis in HL-60 cells but not in HT-29 cells. The GF-induced G2/M arrest in HL-60 cells is reversible. Using EMSA and super-shift analysis, we demonstrated that GF stimulated NF-kappaB binding activity in HL-60 cells, which was completely inhibited by pretreatment of TPCK. Treatment of HL-60 with 30 microM GF activated JNK but not ERK or p38 MAPK and subsequently resulted in phosphorylation of Bcl-2. Pretreatment of TPCK to HL-60 cells blocked the GF-induced Bcl-2 phosphorylation but not JNK activation. Time course study demonstrated that activation of cdc-2 kinase activity by GF correlated with Bcl-2 phosphorylation. Taken together, our results suggest that activation of NF-kappaB pathway with cdc-2 activation and phosphorylation of Bcl-2 might be involved in G2/M cell cycle arrest in HL-60 cells.  相似文献   

17.
In mouse macrophage cells, the increase of the intracellular cAMP level activates protein kinase A (PKA) and results in inhibition of cell cycle progression in both G1 and G2/M phases. G1 arrest is mediated by a cdk inhibitor, p27Kip1, which prevents G1 cyclin/cdk complexes from being activated in response to colony stimulating factor-1, whereas inhibition of G2/M progression has not been fully elucidated. In this report we analyzed the effect of cAMP on G2/M progression in a mouse macrophage cell line, BAC1.2F5A. Flow cytometric analysis and mitotic index measurement using both synchronized and asynchronized cells revealed that addition of cAMP-elevating agents (8-bromoadenosine 3':5'-cyclic monophosphate and 3-isobutyl-methyl-xanthine), although they did not affect S phase progression or M/G1 transition, temporarily arrested cells in G2 but eventually the cells proceeded to M phase, resulting in about 4 hours delay of G2 progression. Timing of cyclin B1/Cdc2 kinase activation was also retarded by about 4 hours, which was accompanied by inhibition of efficient accumulation of cyclin B1 proteins. Initial induction and accumulation of cyclin B1 mRNA were not hampered, but the half life of cyclin B1 proteins was significantly shorter during G2 phase in the presence of cAMP-elevating agents compared with that of the cells blocked from progressing through M phase by nocodazole. These results imply that the cAMP/PKA pathway regulates G2 phase progression by altering the stability of a crucial cell cycle regulator.  相似文献   

18.
Human parvovirus B19 infects specifically erythroid progenitor cells, which causes transient aplastic crises and hemolytic anemias. Here, we demonstrate that erythroblastoid UT7/Epo cells infected with B19 virus fall into growth arrest with 4N DNA, indicating G(2)/M arrest. These B19 virus-infected cells displayed accumulation of cyclin A, cyclin B1, and phosphorylated cdc2 and were accompanied by an up-regulation in the kinase activity of the cdc2-cyclin B1 complex, similar to that in cells treated with the mitotic inhibitor. However, degradation of nuclear lamina and phosphorylation of histone H3 and H1 were not seen in B19 virus-infected cells, indicating that the infected cells do not enter the M phase. Accumulation of cyclin B1 was persistently localized in the cytoplasm, but not in the nucleus, suggesting that B19 virus infection of erythroid cells raises suppression of nuclear import of cyclin B1, resulting in cell cycle arrest at the G(2) phase. The B19 virus-induced G(2)/M arrest may be the critical event in the damage of erythroid progenitor cells seen in patients with B19 virus infection.  相似文献   

19.
DNA damage induced by radiation or DNA-damaging agents leads to apoptosis and cell cycle arrest. However, DNA damage-triggered signal transduction involved in these cellular responses is not well understood. We previously demonstrated an important role for SHP-2, a ubiquitously expressed SH2 domain-containing tyrosine phosphatase, in the DNA damage-induced apoptotic response. Here we report a potential role for SHP-2 in a DNA damage-activated cell cycle checkpoint. Cell cycle analysis and the mitotic index assay showed that following DNA damage induced by cisplatin or gamma-irradiation, the G2 (but not S) arrest response was diminished in SV40 large T antigen-immortalized embryonic fibroblast cells lacking functional SHP-2. Notably, reintroduction of wild-type SHP-2 into the mutant cells fully restored the DNA damage-induced G2 arrest response, suggesting a direct role of SHP-2 in the G2/M checkpoint. Further biochemical analysis revealed that SHP-2 constitutively associated with 14-3-3beta, and that Cdc25C cytoplasmic translocation induced by DNA damage was essentially blocked in SHP-2 mutant cells. Additionally, we showed that following DNA damage, activation of p38 kinase was significantly elevated, while Erk kinase activation was decreased in mutant cells, and treatment of SHP-2 mutant cells with SB203580, a selective inhibitor for p38 kinase, partially restored the DNA damage-induced G2 arrest response. These results together provide the first evidence that SHP-2 tyrosine phosphatase enhances the DNA damage G2/M checkpoint in SV40 large T antigen immortalized murine embryonic fibroblast cells.  相似文献   

20.
It was recently reported that arsenic trioxide (As_2O_3) can induce complete remission in patients with acute promyelocytic leukemia (APL). In this present article, the biological effect of As_2O_3 on human cervical cancer HeLa cells and HeLa cells overexpressing Bcl-2 is studied. By MTT and colony forming ability assays, morphology alteration, flow cytometric analysis, DNA gel electrephoresis and in situ cell death detection (TUNEL), it was found that As_2O_3 inhibited the growth of HeLa cells and induced G2/M arrest and apoptosis of the cells. RT-PCR, Northern blot, Western blot analysis revealed that As_2O_3 induced HeLa cell apoptosis possibly via decreasing the expression of c-myc and viral genes. HeLa cells overexpressing Bcl-2 partly resist As_2O_3 induced apoptosis, which might be relative to preventing the cells from As_2O_3 caused G2/M block, downregulation of c-myc gene expression and inhibition of viral gene expression was also noted, However, it was found that As_2O_3 at a high concentratio  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号