首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Brain, corpora cardiaca (CC)-corpora allata (CA) complex, suboesophageal ganglion, thoracic and abdominal ganglia of adults, larvae and embryos of Locusta migratoria have been immunohistochemically screened for gastrin cholecystokinin (CCK-8(s]-like material. In adult, numerous immunoreactive neurons and nerve fibres are located, with a marked symmetry, in various parts of the brain and throughout the ventral nerve cord. In the median part of the brain, cell bodies belonging neither to cellular type A1 nor A2 (following Victoria blue-paraldehyde fuchsin staining) are immunopositive; their processes terminate in the upper protocerebral neuropile. In lateral parts of the brain, external cell bodies send axons into CC and some up to CA, other internal have processes which terminate in the neuropile of the brain. Two of these latter cells react also with methionine-enkephalin antiserum. In the ventral nerve cord, in addition to numerous perikarya, immunoreactive arborizations terminate in the neuropile or in close association with the sheath, at the dorsal part of all ganglia. This CCK-8(s) distribution pattern is observed only at the two last larval instars, but is precociously detected in the abdominal nerve cord of embryos, one day before hatching.  相似文献   

2.
An antiserum against an achetakinin analog selectively localized leucokinin VIII (LKVIII) in the CNS ofLeucophaea maderae. Preabsorption studies of the achetakinin antiserum with either preimmune serum or LKVIII prevented a positive reaction in both ELISA and immunocytochemical procedures. LKVIII immunoreactive neurons were found in the brain, frontal, and subesophageal ganglion, all 3 thoracic ganglia and the terminal ganglion. Nerves originating from the thoracic and terminal abdominal ganglia contain LKVIII material. Lateral and medial neurosecretory cells synthesizing LKVIII-like products contribute axons to the nervi corporis cardiaci that terminate in neurohemal sites in the corpora cardiaca and nervi corporis allati. Thus, leucokinin VIII, like leucokinin I (LKI) and leucomyosuppressin (LMS), appears to have both a neurohemal and neurotransmitter mode of regulating target cells inL. maderae.  相似文献   

3.
A tryptophanyl-tRNA synthetase (TrpRS)-immunoreactivity is localized in various neurosecretory cells of all ganglia of the central nervous system of the Orthoptera Locusta migratoria, except in deutocerebrum, and in endocrine cells of the midgut. It has been observed that TrpRS-like material never co-localizes either with CCK-like or octopamine-like material. TrpRS immunoreactive perikarya and processes that ramify extensively throughout the neuropiles have been detected in the protocerebrum, optic lobes, tritocerebrum, suboesophageal, thoracic and abdominal ganglia. In the lateral protocerebrum, a particular TrpRS pathway different from the lateral gastrin cholecystokinin (CCK-8(s] pathway is revealed, certain of these processes terminating in the glandular part of the corpora cardiaca. In the metathoracic ganglion, have been observed numerous immunoreactive cell bodies and processes in the neuropiles. Some of them constitute a major pathway and which are distinct from octopamine (OA) cells but in close vicinity with the latter. In the midgut immunopositive TrpRS-like cells are dispersed among the regenerative and digestive cells of the epithelium; they are different from gastrin-cholecystokinin positive cells. The various TrpRS-like immunoreactivities identified in Locusta indicate that TrpRS-like material may occur in different tissues of organisms other than Vertebrates. These results suggest also that TrpRS-like enzyme could be involved in functions other than aminoacylation, as in Vertebrates.  相似文献   

4.
The morphology of the stomodeal nervous system of the adult dragon flies Bradinopyga geminata and Orthetrum chrysis is described. No gastric ganglion or ganglion ingluviale has been found. Instead the oesophageal nerve forks near the junction of the proventriculus and the midgut. The two nerves run on either side of the midline as ingluvial nerves and enter the proventricular ganglionic masses. These ganglionic masses are connected by a transverse nerve, which has been called as the nervus transversus proventriculare. Both bipolar and multipolar types of sensory cells have been found over the surface of the crop. These cell bodies appear to be interconnected by connective tissue. Dendrites of these cells terminate on the longitudinal muscle fibres, surrounding the proventriculus and the midgut. The proximal processes of these cells enter the proventricular ganglionic mass. In methylene blue whole mounts they resemble the stretch receptors, hence it is quite probable that they play some role in the peristaltic movement of the gut. The corpora cardiaca lie dorsal to the pharynx and are connected to the brain by two pairs of nerves, the nervi corporis cardiaci (NCC I, NCC II). Unlike in other insects, the nerve connecting the corpora cardiaca with the corpora allata is slender and arises as a branch of the nerve, nervus corporis allati II. The corpora alata are spherical to ovoid in shape and lie ventral to the nerve cord. Anteriorly they are attached to the inner wall of the hypopharynx and posteriorly to the subesophageal ganglion by a pair of nerves, the nervi corporis allati II.  相似文献   

5.
The distribution of the NPY-like substances in the nervous system and the midgut of the migratory locust, Locusta migratoria and in the brain of the grey fleshfly, Sarcophaga bullata was determined by immunocytochemistry using an antiserum directed against synthetic porcine NPY. The peroxidase-antiperoxidase procedure revealed that NPY immunoreactive cell bodies and nerve fibers were observed in the brain, optic lobes, corpora cardiaca, suboesophageal ganglion and ventral nerve cord of the locust and in the brain, optic lobes and suboesophageal ganglion of the fleshfly. In the locust midgut, numerous endocrine cells and nerve fibers penetrating the outer musculature contained NPY-like immunoreactivity. The concentrations of NPY immunoreactive material in acetic acid extracts of locust brain, optic lobes, thoracic ganglia, ovaries and midguts was measured using a specific radioimmunoassay technique. The dilution curves of the crude tissue extracts were parallel to the standard curve. The highest amount of NPY-like immunoreactivity was found in the locust ovary and midgut. Reverse-phase high-performance liquid chromatography (RP-HPLC) and radioimmunoassay were used to characterize the NPY-like substances in the locust brain and midgut. HPLC-analysis revealed that NPY-immunoreactivity in the locust brain eluted as three separate peaks. The major peak corresponded to a peptide less hydrophobic than synthetic porcine NPY. RP-HPLC analysis of midgut extracts revealed the presence of an additional NPY-immunoreactive peak which had a retention time similar to the porcine NPY standard. The present data show the existence of a widespread network of NPY immunoreactive neurons in the nervous system of the locust and the fleshfly. Characterization of the immunoreactive substances indicates that peptides similar but not identical to porcine NPY are present in the central nervous system and midgut of insects.  相似文献   

6.
The activity of the substance(s) which are contained in the cephalic endocrine organs of the locust which induce egg diapause in Bombyx mori was examined by implantation and injection of saline extracts of these organs. Extracts from the median and lateral neurosecretory parts of the locust brain were not effective in inducing egg diapause. Extracts of the corpora cardiaca, corpora allata, and suboesophageal ganglion of the locust induced diapause eggs in Bombyx pharate adults from which the suboesophageal ganglion had been removed. The first two extracts could induce egg diapause even in isolated abdomens of pharate adults of Bombyx. In the locust corpora cardiaca, the activity was present only in the glandular lobe and not in the nervous region. This activity decreased when the nervi corporis cardiaci I and II and of nervi corporis allati I were cut. Allatectomy also brought about a decrease in the activity in the glandular lobe which could not be restored by the injection of juvenile hormone. The activity in the corpora allata was enhanced slightly by the disconnection though not significantly.From these results, it is assumed that the corpora cardiaca, corpora allata and suboesophageal ganglion of the locust contain and active principle(s) capable of inducing egg diapause in Bombyx mori. The nervous connections between the brain, corpora cardiaca, and corpora allata are essential for the accumulation of the active substance(s) in the glandular lobes of the corpora cardiaca.  相似文献   

7.
The distribution and actions of FMRFamide-related peptides (FaRPs) in the corpora cardiaca of the locust Locusta migratoria were studied. Antisera to FMRFamide and SchistoFLRFamide (PDVDHVFLRFamide) label neuronal processes that impinge on glandular cells in the glandular lobe of the corpora cardiaca known to produce adipokinetic hormones. Electron microscopic immunocytochemistry revealed that these FaRP-containing processes form synaptoid contacts with the glandular cells. Approximately 12% of the axon profiles present in the glandular part of the corpus cardiacum contained SchistoFLRFamide-immunoreactive material. Retrograde tracing of the axons in the nervus corporis cardiaci II with Lucifer yellow revealed 25–30 labelled neuronal cell bodies in each lateral part of the protocerebrum. About five of these in each hemisphere reacted with the SchistoFLRFamide-antiserum. Double-labelling immunocytochemistry showed that the FaRP-containing processes in the glandular lobe of the corpora cardiaca are distinct from neuronal processes, reacting with an antiserum to the neuropeptide locustatachykinin. The effect of the decapeptide SchistoFLRFamide and the tetrapeptide FMRFamide on the release of adipokinetic hormone I (AKH I) from the cells in the glandular part of the corpus cardiacum was studied in vitro. Neither the deca- nor the tetrapeptide had any effect on the spontaneous release of AKH I. Release of AKH I induced by the phosphodiesterase inhibitor IBMX, however, was reduced significantly by both peptides. These results point to an involvement of FaRPs as inhibitory modulators in the regulation of the release of adipokinetic hormone from the glandular cells.  相似文献   

8.
Summary Crustacean cardioactive peptide-immunoreactive neurons occur in the entire central nervous system of Locusta migratoria. The present paper focuses on mapping studies in the ventral nerve cord and on peripheral projection sites. Two types of contralaterally projecting neurons occur in all neuromers from the subesophageal to the seventh abdominal ganglia. One type forms terminals at the surface of the thoracic nerves 6 and 1, the distal perisympathetic organs, the lateral heart nerves, and on ventral and dorsal diaphragm muscles. Two large neurons in the anterior part and several neurons of a different type in the posterior part of the terminal ganglion project into the last tergal nerves. In the abdominal neuromers 1–7, two types of ipsilaterally projecting neurons occur, one of which gives rise to neurosecretory terminals in the distal perisympathetic organs, in peripheral areas of the transverse, stigmata and lateral heart nerves. Four subesophageal neurons have putative terminals in the neurilemma of the nervus corporis allati II, and in the corpora allata and cardiaca. In addition, several immunoreactive putative interneurons and other neurons were mapped in the ventral nerve cord. A new in situ whole-mount technique was essential for elucidation of the peripheral pathways and targets of the identified neurons, which suggest a role of the peptide in the control of heartbeat, abdominal ventilatory and visceral muscle activity.Abbreviations AG abdominal ganglia - AM alary muscle - AMN alary muscle nerve - CA corpus allatum - CC corpus cardiacum - dPSO distal perisympathetic organ - LHN lateral heart nerve - LT CCAP-immunoreactive lateral tract - NCA nervus corporis allati - NCC nervus corporis cardiaci - NM neuromer - PMN paramedian nerve - PSO perisympathetic organ - SOG subesophageal ganglion - VDM ventral diaphragm muscles - VNC ventral nerve cord  相似文献   

9.
Summary The central and visceral nervous systems of the cockroach Periplaneta americana were studied by means of the peroxidase-antiperoxidase immunocytochemical method, with the use of antibody to bovine pancreatic polypeptide (PP). PP-like immunoreactive neuron somata are most numerous in the brain; at least 6 pairs of cell groups occur in clearly defined regions. Three pairs of cells each are also present in the suboesophageal ganglion and the thoracic ganglia, one pair of a single cell each in the first abdominal and the frontal ganglia, and 4 to 6 pairs of single cells in the terminal ganglion. No reactive cells were found in the retrocerebral complex and the second to the fifth abdominal ganglia. The axons containing PP-like immunoreactivity issue many branches that are distributed in the entire brain-retrocerebral complex, ventral cord, and visceral nervous system. PP-like immunoreactive material produced in the brain seems to be transported by three routes: protocerebrum to corpora cardiaca (-allata) through the nervi corporis cardiaci, tritocerebrum to visceral nervous system through frontal commissures, and to ventral cord through circumoesophageal connectives.A possible homology between the mammalian brain-GEP (gastro-enteropancreatic) system and the brain-midgut system of this insect is discussed.  相似文献   

10.
Summary Brain, corpora cardiaca (CC)-corpora allata (CA) complex, suboesophageal ganglion, thoracic and abdominal ganglia of adults, larvae and embryos of Locusta migratoria have been immunohistochemically screened for gastrin cholecystokinin (CCK-8(s))-like material. In adult, numerous immunoreactive neurons and nerve fibres are located, with a marked symmetry, in various parts of the brain and throughout the ventral nerve cord. In the median part of the brain, cell bodies belonging neither to cellular type A1 nor A2 (following Victoria blue-paraldehyde fuchsin staining) are immunopositive; their processes terminate in the upper protocerebral neuropile. In lateral parts of the brain, external cell bodies send axons into CC and some up to CA, other internal have processes which terminate in the neuropile of the brain. Two of these latter cells react also with methionine-enkephalin antiserum. In the ventral nerve cord, in addition to numerous perikarya, immunore-active arborizations terminate in the neuropile or in close association with the sheath, at the dorsal part of all ganglia.This CCK-8(s) distribution pattern is observed only at the two last larval instars, but is precociously detected in the abdominal nerve cord of embryos, one day before hatching.  相似文献   

11.
Résumé L'étude infrastructurale des nerfs cardiaques afférents et des nerfs allato-cardiaques qui entrent dans la constitution du système neurosécréteur rétrocérébral de Locusta migratoria migratorioides (R. et F.) révèle l'existence des trois types de fibres neurosécrétrices définis dans les corpora cardiaca. Une quatrième catégorie de fibres caractérisées par la présence de vésicules claires existe dans les nerfs allato-cardiaques et dans les corpora allata. L'origine des fibres et l'évolution des grains de neurosécrétion au cours de leur transit sont envisagées.
Ultrastructural study of the retrocerebral neurosecretory system in Locusta migratoria migratorioides (R. et F.)II. Neurosecretory pathways
Summary An ultrastructural study of the nervi corporis cardiaci and nervi corporis allati, which are part of the retrocerebral neurosecretory system of Locusta migratoria migratorioides, reveals the existence of three neurosecretory fiber types. A fourth neurosecretory fibertype with electron lucent vesicles is also present in the nervi corporis allati and in the corpora allata. The fibers are characterized by differences in the size and electron opacity of the neurosecretory granules. The origin of the various neurosecretory fiber types and the evolution of the neurosecretory granules are discussed.
  相似文献   

12.
Methanolic brain extracts of Locusta migratoria inhibit in vitro juvenile hormone biosynthesis in both the locust L. migratoria and the cockroach Diploptera punctata. A polyclonal antibody against allatostatin-5 (AST-5) (dipstatin-2) of this cockroach was used to immunolocalize allatostatin-5-like peptides in the central nervous system of the locusts Schistocerca gregaria and L. migratoria and of the fleshfly Neobellieria bullata. In both locust species, immunoreactivity was found in many cells and axons of the brain-retrocerebral complex, the thoracic and the abdominal ganglia. Strongly immunoreactive cells were stained in the pars lateralis of the brain with axons (NCC II and NCA I) extending to and arborizing in the corpus cardiacum and the corpora allata. Although many neurosecretory cells of the pars intercerebralis project into the corpus cardiacum, only 12 of them were immunoreactive and the nervi corporis cardiaci I (NCC I) and fibers in the nervi corporis allati II (NCA II) connecting the corpora allata to the suboesophageal ganglion remained unstained. S. gregaria and L. migratoria seem to have an allatostatin-like neuropeptide present in axons of the NCC II and the NCA I leading to the corpus cardiacum and the corpora allata. All these data suggest that in locusts allatostatin-like neuropeptides might be involved in controlling the production of juvenile hormone by the corpora allata and, perhaps, some aspects of the functioning of the corpus cardiacum as well. However, when tested in a L. migratoria in-vitro juvenile hormone-biosynthesis assay, allatostatin-5 did not yield an inhibitory or stimulatory effect. There is abundant AST-5 immunoreactivity in cell bodies of the fleshfly N. bullata, but none in the CA-CC complexes. Apparently, factors that are immunologically related to AST-5 do occur in locusts and fleshflies but, the active protion of the peptide required to inhibit JH biosynthesis in locusts is probably different from that of AST-5.  相似文献   

13.
Summary Neural connections of the corpus cardiacum (CC) in the African locust, Locusta migratoria, were labelled with the fluorescent tracer Lucifer yellow. (1) Unilateral anterograde labelling of the nervus corporis cardiaci I revealed fluorescent fibres in the storage lobe of the CC (CCS). Some fluorescent fibres in the CCS closely approached the ipsilateral border of the glandular lobes of the CC (CCG). Fluorescent fibres also projected into the neuropile of the hypocerebral ganglion via the ipsilateral nervi cardiostomatogastrici I and II, and from there into the oesophageal nerves. (2) Unilateral anterograde labelling of the nervus corporis cardiaci II revealed fluorescent fibres in the CCS and in the ipsilateral CCG. Fluorescent fibres also projected via the ipsilateral nervus corporis allati I into the corpus allatum. (3) Unilateral retrograde labelling of the nervus corporis allati I revealed a distinct fluorescent nerve tract that runs through the CCS and into the nervus corporis cardiaci II. The tract arises from about eight cell bodies in the brain at the rostroventral side of the ipsilateral calyx of the mushroom body. (4) Labelling of the recurrent nerve revealed fluorescent fibres and some fluorescent cell bodies in the hypocerebral ganglion and, via the nervi cardiostomatogastrici I and II, also in the CCS. Fluorescent fibres were also present in the oesophageal nerves.  相似文献   

14.
Summary A tryptophanyl-tRNA synthetase (TrpRS)-immunoreactivity is localized in various neurosecretory cells of all ganglia of the central nervous system of the Orthoptera Locusta migratoria, except in deutocerebrum, and in endocrine cells of the midgut. It has been observed that TrpRS-like material never co-localizes either with CCK-like or octopamine-like material.TrpRS immunoreactive perikarya and processes that ramify extensively throughout the neuropiles have been detected in the protocerebrum, optic lobes, tritocerebrum, suboesophageal, thoracic and abdominal ganglia. In the lateral protocerebrum, a particular TrpRS pathway different from the lateral gastrin cholecystokinin (CCK-8(s)) pathway is revealed, certain of these processes terminating in the glandular part of the corpora cardiaca. In the metathoracic ganglion, have been observed numerous immunoreactive cell bodies and processes in the neuropiles. Some of them constitute a major pathway and which are distinct from octopamine (OA) cells but in close vicinity with the latter. In the midgut immunopositive TrpRS-like cells are dispersed among the regenerative and digestive cells of the epithelium; they are different from gastrin-cholecystokinin positive cells.The various TrpRS-like immunoreactivities identified in Locusta indicate that TrpRS-like material may occur in different tissues of organisms other than Vertebrates. These results suggest also that TrpRS-like enzyme could be involved in functions other than aminoacylation, as in Vertebrates.  相似文献   

15.
Summary Four neurons in the brain of the migratory locust were immunohistologically identified with an anti-met-enkephalin antiserum. The perikarya of two of these cells are located in the center of each of the two groups of lateral protocerebral neurosecretory cells. The fibres coming from these perikarya terminate in numerous immunoreactive ramifications visible at the periphery of both tractus I to the corpora cardiaca, through which pass the neurosecretory products of the pars intercerebralis. The other two cell bodies are located at the bases of the two optic lobes; their fibres enter the posterior part of the protocerebrum and ramify around the root of the nervus corporis cardiaci II, another area through which neurosecretory products pass. The topographic distribution of these met-enkephalin arborizations suggests that these four neurons may act as neuromodulators of the acitivity of the major neurosecretory cells in the brain of this insect.  相似文献   

16.
This study was undertaken to reveal the quantitative distribution of the insect neuropeptide periviscerokinin‐1 (Pea‐PVK‐1) in the central nervous system of Periplaneta americana and to demonstrate that neurons stained in a previous immunohistochemical study contain authentic Pea‐PVK‐1. For this, we combined ELISA, HPLC, and MALDI‐TOF mass spectrometry. The high specificity of the used antiserum enabled the quantification of Pea‐PVK‐1 in unseparated tissue extracts. No cross‐reactivities with other insect neuropeptides were detected in ELISA. Only two immunoreactive fractions, coeluting with synthetic Pea‐PVK‐1 in its oxidized and nonoxidized form, were found in HPLC‐separated extracts of the brain, suboesophageal ganglion, metathoracic ganglion, second abdominal ganglion with or without perisympathetic organ, and terminal ganglion. By using MALDI‐TOF mass spectrometry, we were able to confirm the existence of authentic Pea‐PVK‐1 in these fractions. The abdominal perisympathetic organs contained 6.3 pmol Pea‐PVK‐1 per animal; another 1.3 pmol were found in the abdominal ganglia. More than 90% of the total 8.2 pmol in the central nervous system was found in the abdominal ganglia and their perisympathetic organs. The corpora cardiaca and corpora allata did not contain immunoreactive material, suggesting that Pea‐PVK‐1 is not released by the cephalic neurohaemal system. The quantitative distribution of Pea‐PVK‐1 differs considerably from that of other known insect neuropeptides. Arch. Insect Biochem. Physiol. 40:203–211, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

17.
Summary Histological sections of the brain, suboesophageal ganglion, and the corpora cardiaca/corpora allata complex were examined for the presence of crustacean hyperglycemic hormone-like immunoreactive material. With the use of an antiserum directed against the hyperglycemic hormone of Carcinus maenas, immunofluorescence was found in the median portion of the pars intercerebralis, and the corpora cardiaca. Extracts of corpora cardiaca were examined by radioimmunoassay for competitive binding to the antiserum; one pair of corpora cardiaca contains at least 7 pg crustacean hyperglycemic hormone-like material.  相似文献   

18.
Clark L  Agricola HJ  Lange AB 《Peptides》2006,27(3):549-558
Proctolin-like immunoreactivity (PLI) was widely distributed in the locust, Locusta migratoria, within the central, peripheral and stomatogastric nervous systems, as well as the digestive system and retrocerebral complex. Proctolin-like immunoreactivity was observed in cells and processes of the brain and all ganglia of the ventral nerve cord. Of interest, PLI was found in the lateral neurosecretory cells, which send axons within the paired nervi corporis cardiaci II (NCC II) to the corpus cardiacum (CC). The CC contained extensive processes displaying PLI, which continued on within the paired nervi corporis allata (NCA) to the paired corpora allata (CA) where the axons entered and branched therein. The frontal and hypocerebral ganglia of the stomatogastric nervous system contained PLI within processes, resulting in a brightly staining neuropile. Each region of the gut contained PLI in axons and processes of varying patterns and densities. The paired ingluvial ganglia contained PLI, including an extensively stained neuropile and immunoreactive axons projecting through the nerves to the foregut. The hindgut contained PLI within longitudinal tracts, with lateral projections originating from the 8th abdominal ganglion via the proctodeal nerve. The midgut contained PLI in a regular latticework pattern with many varicosities and blebs. No difference in PLI in cells and processes of the central nervous system (CNS) was found between males and females.  相似文献   

19.
ABSTRACT Dose-response curves are presented for the diuretic activity in aqueous extracts of brain, retrocerebral complex, and ventral nerve cord ganglia from Acheta domesticus . Diuretic activity is highest in extracts of brain and corpora cardiaca. In comparison with such extracts, those of the suboesophageal ganglia and thoracic ganglia I-III produce truncated responses, whilst abdominal ganglia 1–4 show evidence of an inhibition of the diuretic response at high doses. ED50 values, obtained from Hill plots, are similar for extracts of brain, corpora cardiaca, corpora allata, and abdominal ganglia, but are 3–4 times higher for extracts of suboesophageal and thoracic ganglia.
Separation of aqueous extracts of corpora cardiaca by reversed-phase HPLC yields a number of fractions which stimulate fluid secretion in isolated tubules. Diuretic activity in these fractions is destroyed by treatment with Pronase E, and on this basis is identified as peptidic. In general, diuretic activity is found in the same RP-HPLC fractions prepared from aqueous extracts of brain, suboesophageal ganglia, thoracic ganglia I-III, and abdominal ganglia 1–4.  相似文献   

20.
Cephalic nervous connexions were found necessary for oviposition and normal egg maturation in the two species studied. Neurosecretory cells of A type from the brain, suboesophageal, thoracic, and four abdominal ganglia seem to elaborate a stimulating substance for egg laying. This neurosecretion type is not present in corpora cardiaca, corpora allata, the four last abdominal ganglia, or perisympathetic organs which have no clear-cut effect on oviposition. The circadian rhythm of egg laying appears to be entirely controlled by the liberation of this neurosecretion and by an inhibitory factor localized in the head.In Carausius, egg deposition by the valvulae of the ovipositor is regulated by these two factors whereas egg transit through the common oviduct is a distinct preliminary step under nervous control. This nervous effect from the posterior region does not exist in Clitumnus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号